forked from microsoft/Xbox-ATG-Samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathStepTimer.h
189 lines (153 loc) · 6.74 KB
/
StepTimer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
//
// StepTimer.h - A simple timer that provides elapsed time information
//
#pragma once
#include <cmath>
#include <exception>
#include <stdint.h>
namespace DX
{
// Helper class for animation and simulation timing.
class StepTimer
{
public:
StepTimer() noexcept(false) :
m_elapsedTicks(0),
m_totalTicks(0),
m_leftOverTicks(0),
m_frameCount(0),
m_framesPerSecond(0),
m_framesThisSecond(0),
m_qpcSecondCounter(0),
m_isFixedTimeStep(false),
m_targetElapsedTicks(TicksPerSecond / 60)
{
if (!QueryPerformanceFrequency(&m_qpcFrequency))
{
throw std::exception( "QueryPerformanceFrequency" );
}
if (!QueryPerformanceCounter(&m_qpcLastTime))
{
throw std::exception( "QueryPerformanceCounter" );
}
// Initialize max delta to 1/10 of a second.
m_qpcMaxDelta = static_cast<uint64_t>(m_qpcFrequency.QuadPart / 10);
}
// Get elapsed time since the previous Update call.
uint64_t GetElapsedTicks() const { return m_elapsedTicks; }
double GetElapsedSeconds() const { return TicksToSeconds(m_elapsedTicks); }
// Get total time since the start of the program.
uint64_t GetTotalTicks() const { return m_totalTicks; }
double GetTotalSeconds() const { return TicksToSeconds(m_totalTicks); }
// Get total number of updates since start of the program.
uint32_t GetFrameCount() const { return m_frameCount; }
// Get the current framerate.
uint32_t GetFramesPerSecond() const { return m_framesPerSecond; }
// Set whether to use fixed or variable timestep mode.
void SetFixedTimeStep(bool isFixedTimestep) { m_isFixedTimeStep = isFixedTimestep; }
// Set how often to call Update when in fixed timestep mode.
void SetTargetElapsedTicks(uint64_t targetElapsed) { m_targetElapsedTicks = targetElapsed; }
void SetTargetElapsedSeconds(double targetElapsed) { m_targetElapsedTicks = SecondsToTicks(targetElapsed); }
// Integer format represents time using 10,000,000 ticks per second.
static const uint64_t TicksPerSecond = 10000000;
static double TicksToSeconds(uint64_t ticks) { return static_cast<double>(ticks) / TicksPerSecond; }
static uint64_t SecondsToTicks(double seconds) { return static_cast<uint64_t>(seconds * TicksPerSecond); }
// After an intentional timing discontinuity (for instance a blocking IO operation)
// call this to avoid having the fixed timestep logic attempt a set of catch-up
// Update calls.
void ResetElapsedTime()
{
if (!QueryPerformanceCounter(&m_qpcLastTime))
{
throw std::exception("QueryPerformanceCounter");
}
m_leftOverTicks = 0;
m_framesPerSecond = 0;
m_framesThisSecond = 0;
m_qpcSecondCounter = 0;
}
// Update timer state, calling the specified Update function the appropriate number of times.
template<typename TUpdate>
void Tick(const TUpdate& update)
{
// Query the current time.
LARGE_INTEGER currentTime;
if (!QueryPerformanceCounter(¤tTime))
{
throw std::exception( "QueryPerformanceCounter" );
}
uint64_t timeDelta = currentTime.QuadPart - m_qpcLastTime.QuadPart;
m_qpcLastTime = currentTime;
m_qpcSecondCounter += timeDelta;
// Clamp excessively large time deltas (e.g. after paused in the debugger).
if (timeDelta > m_qpcMaxDelta)
{
timeDelta = m_qpcMaxDelta;
}
// Convert QPC units into a canonical tick format. This cannot overflow due to the previous clamp.
timeDelta *= TicksPerSecond;
timeDelta /= m_qpcFrequency.QuadPart;
uint32_t lastFrameCount = m_frameCount;
if (m_isFixedTimeStep)
{
// Fixed timestep update logic
// If the app is running very close to the target elapsed time (within 1/4 of a millisecond) just clamp
// the clock to exactly match the target value. This prevents tiny and irrelevant errors
// from accumulating over time. Without this clamping, a game that requested a 60 fps
// fixed update, running with vsync enabled on a 59.94 NTSC display, would eventually
// accumulate enough tiny errors that it would drop a frame. It is better to just round
// small deviations down to zero to leave things running smoothly.
if (static_cast<uint64_t>(std::abs(static_cast<int64_t>(timeDelta - m_targetElapsedTicks))) < TicksPerSecond / 4000)
{
timeDelta = m_targetElapsedTicks;
}
m_leftOverTicks += timeDelta;
while (m_leftOverTicks >= m_targetElapsedTicks)
{
m_elapsedTicks = m_targetElapsedTicks;
m_totalTicks += m_targetElapsedTicks;
m_leftOverTicks -= m_targetElapsedTicks;
m_frameCount++;
update();
}
}
else
{
// Variable timestep update logic.
m_elapsedTicks = timeDelta;
m_totalTicks += timeDelta;
m_leftOverTicks = 0;
m_frameCount++;
update();
}
// Track the current framerate.
if (m_frameCount != lastFrameCount)
{
m_framesThisSecond++;
}
if (m_qpcSecondCounter >= static_cast<uint64_t>(m_qpcFrequency.QuadPart))
{
m_framesPerSecond = m_framesThisSecond;
m_framesThisSecond = 0;
m_qpcSecondCounter %= m_qpcFrequency.QuadPart;
}
}
private:
// Source timing data uses QPC units.
LARGE_INTEGER m_qpcFrequency;
LARGE_INTEGER m_qpcLastTime;
uint64_t m_qpcMaxDelta;
// Derived timing data uses a canonical tick format.
uint64_t m_elapsedTicks;
uint64_t m_totalTicks;
uint64_t m_leftOverTicks;
// Members for tracking the framerate.
uint32_t m_frameCount;
uint32_t m_framesPerSecond;
uint32_t m_framesThisSecond;
uint64_t m_qpcSecondCounter;
// Members for configuring fixed timestep mode.
bool m_isFixedTimeStep;
uint64_t m_targetElapsedTicks;
};
}