-
Notifications
You must be signed in to change notification settings - Fork 60
/
mlp.py
158 lines (135 loc) · 5.71 KB
/
mlp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# https://github.com/zcaicaros/L2D for reference
import torch
import torch.nn as nn
import torch.nn.functional as F
###MLP with lienar output
class MLP(nn.Module):
def __init__(self, num_layers, input_dim, hidden_dim, output_dim):
'''
num_layers: number of layers in the neural networks (EXCLUDING the input layer). If num_layers=1, this reduces to linear model.
input_dim: dimensionality of input features
hidden_dim: dimensionality of hidden units at ALL layers
output_dim: number of classes for prediction
device: which device to use
'''
super(MLP, self).__init__()
self.linear_or_not = True # default is linear model
self.num_layers = num_layers
if num_layers < 1:
raise ValueError("number of layers should be positive!")
elif num_layers == 1:
# Linear model
self.linear = nn.Linear(input_dim, output_dim)
else:
# Multi-layer model
self.linear_or_not = False
self.linears = torch.nn.ModuleList()
self.batch_norms = torch.nn.ModuleList()
self.linears.append(nn.Linear(input_dim, hidden_dim))
for layer in range(num_layers - 2):
self.linears.append(nn.Linear(hidden_dim, hidden_dim))
self.linears.append(nn.Linear(hidden_dim, output_dim))
for layer in range(num_layers - 1):
self.batch_norms.append(nn.BatchNorm1d((hidden_dim)))
def forward(self, x):
if self.linear_or_not:
# If linear model
return self.linear(x)
else:
# If MLP
h = x
for layer in range(self.num_layers - 1):
h = F.relu(self.batch_norms[layer](self.linears[layer](h)))
return self.linears[self.num_layers - 1](h)
class MLPActor(nn.Module):
def __init__(self, num_layers, input_dim, hidden_dim, output_dim):
'''
num_layers: number of layers in the neural networks (EXCLUDING the input layer). If num_layers=1, this reduces to linear model.
input_dim: dimensionality of input features
hidden_dim: dimensionality of hidden units at ALL layers
output_dim: number of classes for prediction
device: which device to use
'''
super(MLPActor, self).__init__()
self.linear_or_not = True # default is linear model
self.num_layers = num_layers
if num_layers < 1:
raise ValueError("number of layers should be positive!")
elif num_layers == 1:
# Linear model
self.linear = nn.Linear(input_dim, output_dim)
else:
# Multi-layer model
self.linear_or_not = False
self.linears = torch.nn.ModuleList()
'''
self.batch_norms = torch.nn.ModuleList()
'''
self.linears.append(nn.Linear(input_dim, hidden_dim))
for layer in range(num_layers - 2):
self.linears.append(nn.Linear(hidden_dim, hidden_dim))
self.linears.append(nn.Linear(hidden_dim, output_dim))
'''
for layer in range(num_layers - 1):
self.batch_norms.append(nn.BatchNorm1d((hidden_dim)))
'''
def forward(self, x):
if self.linear_or_not:
# If linear model
return self.linear(x)
else:
# If MLP
h = x
for layer in range(self.num_layers - 1):
'''
h = F.relu(self.batch_norms[layer](self.linears[layer](h)))
'''
h = torch.tanh(self.linears[layer](h))
# h = F.relu(self.linears[layer](h))
return self.linears[self.num_layers - 1](h)
class MLPCritic(nn.Module):
def __init__(self, num_layers, input_dim, hidden_dim, output_dim):
'''
num_layers: number of layers in the neural networks (EXCLUDING the input layer). If num_layers=1, this reduces to linear model.
input_dim: dimensionality of input features
hidden_dim: dimensionality of hidden units at ALL layers
output_dim: number of classes for prediction
device: which device to use
'''
super(MLPCritic, self).__init__()
self.linear_or_not = True # default is linear model
self.num_layers = num_layers
if num_layers < 1:
raise ValueError("number of layers should be positive!")
elif num_layers == 1:
# Linear model
self.linear = nn.Linear(input_dim, output_dim)
else:
# Multi-layer model
self.linear_or_not = False
self.linears = torch.nn.ModuleList()
'''
self.batch_norms = torch.nn.ModuleList()
'''
self.linears.append(nn.Linear(input_dim, hidden_dim))
for layer in range(num_layers - 2):
self.linears.append(nn.Linear(hidden_dim, hidden_dim))
self.linears.append(nn.Linear(hidden_dim, output_dim))
'''
for layer in range(num_layers - 1):
self.batch_norms.append(nn.BatchNorm1d((hidden_dim)))
'''
def forward(self, x):
if self.linear_or_not:
# If linear model
return self.linear(x)
else:
# If MLP
h = x
for layer in range(self.num_layers - 1):
'''
h = F.relu(self.batch_norms[layer](self.linears[layer](h)))
'''
h = torch.tanh(self.linears[layer](h))
# h = F.relu(self.linears[layer](h))
return self.linears[self.num_layers - 1](h)