forked from google/fully-homomorphic-encryption
-
Notifications
You must be signed in to change notification settings - Fork 0
/
yosys_openfhe_runner.cc
322 lines (288 loc) · 13.9 KB
/
yosys_openfhe_runner.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// Copyright 2021 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "transpiler/yosys_openfhe_runner.h"
#include "absl/container/flat_hash_map.h"
#include "absl/strings/substitute.h"
#include "google/protobuf/text_format.h"
#include "openfhe/binfhe/binfhecontext.h"
#include "xls/common/status/status_macros.h"
#include "xls/contrib/xlscc/metadata_output.pb.h"
#include "xls/protected/netlist.h"
#include "xls/public/value.h"
namespace fully_homomorphic_encryption {
namespace transpiler {
using EvalFn = xls::netlist::rtl::CellOutputEvalFn<lbcrypto::LWECiphertext>;
// NOTE: The input order to methods YosysOpenFheRunner::OpenFheOp_* is the
// same as the order in which the pins are declared in the Liberty file. This
// is generally as you expect.
absl::StatusOr<OpenFheBoolValue> YosysOpenFheRunner::OpenFheOp_inv(
const std::vector<OpenFheBoolValue>& args) {
XLS_CHECK_EQ(args.size(), 1);
return OpenFheBoolValue(state_->cc_.EvalNOT(args[0].lwe()), state_->cc_);
}
absl::StatusOr<OpenFheBoolValue> YosysOpenFheRunner::OpenFheOp_buffer(
const std::vector<OpenFheBoolValue>& args) {
XLS_CHECK_EQ(args.size(), 1);
return args[0];
}
#define IMPL2(cell, GATE) \
absl::StatusOr<OpenFheBoolValue> YosysOpenFheRunner::OpenFheOp_##cell( \
const std::vector<OpenFheBoolValue>& args) { \
XLS_CHECK_EQ(args.size(), 2); \
return OpenFheBoolValue( \
state_->cc_.EvalBinGate(lbcrypto::GATE, args[0].lwe(), args[1].lwe()), \
state_->cc_); \
}
IMPL2(and2, AND);
IMPL2(nand2, NAND);
IMPL2(or2, OR);
IMPL2(nor2, NOR);
IMPL2(xor2, XOR_FAST);
IMPL2(xnor2, XNOR_FAST);
#undef IMPL2
absl::Status YosysOpenFheRunner::Run(
absl::Span<lbcrypto::LWECiphertext> result,
std::vector<absl::Span<const lbcrypto::LWECiphertext>> in_args,
std::vector<absl::Span<lbcrypto::LWECiphertext>> inout_args,
lbcrypto::BinFHEContext cc) {
#define OP(name) \
{ \
#name, { \
{ \
"Y", \
[this](const std::vector<OpenFheBoolValue>& args) \
-> absl::StatusOr<OpenFheBoolValue> { \
return this->OpenFheOp_##name(args); \
} \
} \
} \
}
if (state_ == nullptr) {
xls::netlist::rtl::CellToOutputEvalFns<OpenFheBoolValue> openfhe_eval_map{
OP(inv), OP(buffer), OP(and2), OP(nand2),
OP(or2), OP(nor2), OP(xor2), OP(xnor2),
};
XLS_RETURN_IF_ERROR(InitializeOnce(cc, openfhe_eval_map));
}
#undef OP
return state_->Run(result, in_args, inout_args);
}
absl::Status YosysOpenFheRunner::InitializeOnce(
lbcrypto::BinFHEContext cc,
const xls::netlist::rtl::CellToOutputEvalFns<OpenFheBoolValue>& eval_fns) {
if (state_ == nullptr) {
state_ = std::make_unique<YosysOpenFheRunnerState>(
cc, *xls::netlist::cell_lib::CharStream::FromText(liberty_text_),
xls::netlist::rtl::Scanner(netlist_text_));
state_->netlist_ = std::move(
*xls::netlist::rtl::AbstractParser<OpenFheBoolValue>::ParseNetlist(
&state_->cell_library_, &state_->scanner_, state_->zero_,
state_->one_));
XLS_RETURN_IF_ERROR(state_->netlist_->AddCellEvaluationFns(eval_fns));
XLS_CHECK(google::protobuf::TextFormat::ParseFromString(
metadata_text_, &state_->metadata_));
}
return absl::OkStatus();
}
absl::Status YosysOpenFheRunner::YosysOpenFheRunnerState::Run(
absl::Span<lbcrypto::LWECiphertext> result,
std::vector<absl::Span<const lbcrypto::LWECiphertext>> in_args,
std::vector<absl::Span<lbcrypto::LWECiphertext>> inout_args) {
std::string function_name = metadata_.top_func_proto().name().name();
XLS_ASSIGN_OR_RETURN(auto module, netlist_->GetModule(function_name));
// Arguments are in the form of spans of LWECiphertexts, with one span per
// input argument. So for example, if you have two inputs, an uint8_t and an
// int32_t, then you'll have two spans, the first of which is 8-bits wide, and
// the second of which is 32-bits wide. Each span entry will be a
// LWECiphertext representing one bit of the input. It represents a bit of
// input, but it does not act like a "bool".
//
// The interpreter, on the other hand, expects values that act as booleans:
// they can be constructed from bool and can participate in boolean operators.
// From the interpreter's view, they or may not be evaluated to booleans (in
// our case, or course, we want to prevent such evaluation).
//
// a) Constructing from bool is necessary to assign initial values to
// constants in the netlist. These constants are part of the algorithm,
// and constructing TFHE objects from them is OK. Also, technically
// evaluating them as bool is OK since we know their values already.
//
// b) Bool expressions. The Interpreter has code to either parse *and*
// interpret the cell-output-pin-function definitions already provided in
// the cell library as part of the cell definitions, or to parse the
// functions but trap directly into our callback implementations (e.g.,
// YosysOpenFheRunner::OpenFheOp_xor2) to do the actual evaluation. For
// the latter, we only need requirement (a) above, because all the actual
// operations are handled in the callbacks. However, the Interpreter is
// coded to handle the case where a callback isn't available, and so it
// needs to be able to evaluate the FHE objects as booleans as usual. For
// this reason, we must provide arithmetic operation capabilities to our
// FHE booleans.
//
// c) No evaluation to bool. For obvious reasons.
//
// Requirement (b) is useful if for some reasons we cannot provide an
// implementation of a cell and instead rely on the function parser to
// interpret it. In the extreme case, we can simply not pass TfheEvalMap to
// the interpreter, forcing it to evaluate everything. That will still work
// since the FHE objects act as bools.
using NetRef = xls::netlist::rtl::AbstractNetRef<OpenFheBoolValue>;
std::vector<OpenFheBoolValue> input_bits;
size_t in_i = 0, inout_i = 0;
for (const auto& param : metadata_.top_func_proto().params()) {
std::vector<OpenFheBoolValue> arg_bits;
if (param.is_reference() && !param.is_const()) {
XLS_CHECK(inout_i < inout_args.size());
const auto& arg = inout_args[inout_i++];
arg_bits.reserve(arg.size());
for (int i = 0; i < arg.size(); i++) {
arg_bits.emplace_back(arg[i], cc_);
}
} else {
XLS_CHECK(in_i < in_args.size());
const auto& arg = in_args[in_i++];
arg_bits.reserve(arg.size());
for (int i = 0; i < arg.size(); i++) {
arg_bits.emplace_back(arg[i], cc_);
}
}
input_bits.insert(input_bits.begin(), arg_bits.begin(), arg_bits.end());
}
std::reverse(input_bits.begin(), input_bits.end());
xls::netlist::AbstractNetRef2Value<OpenFheBoolValue> input_nets;
const std::vector<NetRef>& module_inputs = module->inputs();
XLS_CHECK_EQ(module_inputs.size(), input_bits.size());
for (int i = 0; i < module->inputs().size(); i++) {
const NetRef in = module_inputs[i];
XLS_CHECK(!input_nets.contains(in));
input_nets.emplace(
in, std::move(input_bits[module->GetInputPortOffset(in->name())]));
}
auto zero = OpenFheBoolValue::Unencrypted(false, cc_);
auto one = OpenFheBoolValue::Unencrypted(true, cc_);
// *2 for hyperthreading opportunities
const int num_threads = sysconf(_SC_NPROCESSORS_ONLN) * 2;
xls::netlist::AbstractInterpreter<OpenFheBoolValue> interpreter(
netlist_.get(), zero, one, num_threads);
XLS_ASSIGN_OR_RETURN(auto output_nets,
interpreter.InterpretModule(module, input_nets, {}));
// The return value output_nets is a map from NetRef to OpenFheBoolValue
// objects. Each of the OpenFheBoolValue objects contains an LWECiphertext,
// which it either owns or has borrowed from elsewhere (whether it owns or has
// borrowed does not matter here.)
//
// We need to map the output_nets-contained LWECiphertexts to the result. We
// do that by assigning each pointer in the result array to the corresponding
// pointer in the output_nets-owned LWECiphertexts.
std::vector<lbcrypto::LWECiphertext> output_bit_vector;
XLS_CHECK(module->outputs().size() == output_nets.size());
for (const NetRef ref : module->outputs()) {
auto tfhe_bool = output_nets.at(ref);
auto lwe = tfhe_bool.lwe();
XLS_CHECK(lwe != nullptr);
output_bit_vector.push_back(lwe);
}
// As we iterate over output_bit_vector, we'll use this iterator.
auto out = output_bit_vector.cbegin();
// The remaining output wires in the netlist follow the declaration order of
// the input wires in the verilog file. Suppose you have the following
// netlist:
//
// module foo(a, b, c, out);
// input [7:0] c;
// input a;
// output [7:0] out;
// input [7:0] b;
//
// Suppose that in that netlist input wires a, b, and c represent in/out
// parameters in the source language (i.e. they are non-const references in
// C++).
//
// In this case, the return values of these parameters will be splayed out in
// the ouput in the same order in which the input wires are declared, rather
// than the order in which they appear in the module statement. In other
// words, at this point out will have c[0], c[1], ... c[7], then it will have
// a, and finally it will have b[0], ..., b[7].
//
// However, the inputs to the runner follow the order in the module statement
// (which in turn mirrors the order in which they are in the source language.)
// Therefore, we have to identify which parts of the output wires correspond
// to each of the input arguments.
size_t copied = 0;
for (int i = 0; i < module_inputs.size(); i++) {
// Start by pulling off the first input net wire. Following the example
// above, it will have the name "c[0]". (When we get to the single-wire "a"
// next, the name will simply be "a".).
std::vector<std::string> name_and_idx =
absl::StrSplit(module_inputs[i]->name(), '[');
// Look for the non-indexed name ("c" in the example above) in the list of
// function arguments, which we can access from the metadata.
auto found = std::find_if(
metadata_.top_func_proto().params().cbegin(),
metadata_.top_func_proto().params().cend(),
[&name_and_idx](const xlscc_metadata::FunctionParameter& arg) {
return arg.name() == name_and_idx[0];
});
// We must be able to find that parameter--failing to is a bug, as we
// autogenerate both the netlist and the metadata from the same source file,
// and provide these parameters to this method.
XLS_CHECK(found != metadata_.top_func_proto().params().cend());
if (found->is_reference() && !found->is_const()) {
// Find the index of the argument for our match. In our example, it will
// be 2, since args[2] is the span for the encoded form of argument "c".
size_t params_i =
std::distance(metadata_.top_func_proto().params().begin(), found);
size_t params_inout_i = -1;
for (size_t i = 0; i <= params_i; i++) {
const auto& param = metadata_.top_func_proto().params().at(i);
if (param.is_reference() && !param.is_const()) {
params_inout_i++;
}
}
XLS_CHECK_GE(params_inout_i, 0);
XLS_CHECK_LE(params_inout_i, params_i);
// Get the bit size of the argument (e.g., 8 since "c" is defined to be a
// byte.)
size_t arg_size = inout_args[params_inout_i].size();
// Now read out the index of the parameter itself (e.g., the 0 in "c[0]").
size_t params_bit_idx = 0;
if (name_and_idx.size() == 2) {
absl::string_view idx = absl::StripSuffix(name_and_idx[1], "]");
XLS_CHECK(absl::SimpleAtoi(idx, ¶ms_bit_idx));
}
// The i'th parameter subscript must be within range (e.g., 0 must be less
// than 8, since c is a byte in out example.)
XLS_CHECK(params_bit_idx < arg_size);
// Now, the out is the return value for c[0] from the example above.
// More generally, out[i] is the write-back value of the param_i'th
// argument at index param_i_idx. Copy that bit directly into the output.
// In our example, this represents argument "c" at index 0, which is
// exactly args[2].
inout_args[params_inout_i][params_bit_idx] = out[0];
out++;
copied++;
}
}
// The return value of the function now comes last, so we copy that.
// If there is no return value, then result.size() == 0 and we do not copy
// anything.
for (int i = 0; i < result.size(); i++, out++, copied++) {
result[i] = *out;
}
XLS_CHECK(copied == output_bit_vector.size());
XLS_CHECK(out == output_bit_vector.cend());
return absl::OkStatus();
}
} // namespace transpiler
} // namespace fully_homomorphic_encryption