diff --git a/CHANGELOG.md b/CHANGELOG.md index 42efb25dcb5..f9cb7a442df 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -78,6 +78,7 @@ #### Improvements - Refactored `quoted_identifier_to_snowflake_type` to avoid making metadata queries if the types have been cached locally. +- Improved `pd.to_datetime` to handle all local input cases. #### Bug Fixes diff --git a/src/snowflake/snowpark/modin/pandas/general.py b/src/snowflake/snowpark/modin/pandas/general.py index 8d933cd6a11..f14e14840bb 100644 --- a/src/snowflake/snowpark/modin/pandas/general.py +++ b/src/snowflake/snowpark/modin/pandas/general.py @@ -1742,16 +1742,13 @@ def to_datetime( The default behaviour (``utc=False``) is as follows: - - Timezone-naive inputs are converted to timezone-naive :class:`~snowflake.snowpark.modin.pandas.Series`: + - Timezone-naive inputs are kept as timezone-naive :class:`~snowflake.snowpark.modin.pandas.DatetimeIndex`: - >>> pd.to_datetime(['2018-10-26 12:00', '2018-10-26 13:00:15']) + >>> pd.to_datetime(['2018-10-26 12:00:00', '2018-10-26 13:00:15']) DatetimeIndex(['2018-10-26 12:00:00', '2018-10-26 13:00:15'], dtype='datetime64[ns]', freq=None) - - Timezone-aware inputs *with constant time offset* are still converted to - timezone-naive :class:`~snowflake.snowpark.modin.pandas.Series` by default. - >>> pd.to_datetime(['2018-10-26 12:00:00 -0500', '2018-10-26 13:00:00 -0500']) - DatetimeIndex(['2018-10-26 12:00:00', '2018-10-26 13:00:00'], dtype='datetime64[ns]', freq=None) + DatetimeIndex(['2018-10-26 10:00:00-07:00', '2018-10-26 11:00:00-07:00'], dtype='datetime64[ns, America/Los_Angeles]', freq=None) - Use right format to convert to timezone-aware type (Note that when call Snowpark pandas API to_pandas() the timezone-aware output will always be converted to session timezone): @@ -1763,17 +1760,17 @@ def to_datetime( issued from a timezone with daylight savings, such as Europe/Paris): >>> pd.to_datetime(['2020-10-25 02:00:00 +0200', '2020-10-25 04:00:00 +0100']) - DatetimeIndex(['2020-10-25 02:00:00', '2020-10-25 04:00:00'], dtype='datetime64[ns]', freq=None) + Index(['2020-10-24 17:00:00-07:00', '2020-10-24 20:00:00-07:00'], dtype='datetime64[ns]') >>> pd.to_datetime(['2020-10-25 02:00:00 +0200', '2020-10-25 04:00:00 +0100'], format="%Y-%m-%d %H:%M:%S %z") - DatetimeIndex(['2020-10-24 17:00:00-07:00', '2020-10-24 20:00:00-07:00'], dtype='datetime64[ns, America/Los_Angeles]', freq=None) + Index(['2020-10-24 17:00:00-07:00', '2020-10-24 20:00:00-07:00'], dtype='datetime64[ns]') Setting ``utc=True`` makes sure always convert to timezone-aware outputs: - Timezone-naive inputs are *localized* based on the session timezone >>> pd.to_datetime(['2018-10-26 12:00', '2018-10-26 13:00'], utc=True) - DatetimeIndex(['2018-10-26 12:00:00-07:00', '2018-10-26 13:00:00-07:00'], dtype='datetime64[ns, America/Los_Angeles]', freq=None) + DatetimeIndex(['2018-10-26 05:00:00-07:00', '2018-10-26 06:00:00-07:00'], dtype='datetime64[ns, America/Los_Angeles]', freq=None) - Timezone-aware inputs are *converted* to session timezone @@ -1784,8 +1781,28 @@ def to_datetime( # TODO: SNOW-1063345: Modin upgrade - modin.pandas functions in general.py raise_if_native_pandas_objects(arg) - if arg is None: - return None # same as pandas + if not isinstance(arg, (DataFrame, Series, pd.Index)): + # use pandas.to_datetime to convert local data to datetime + res = pandas.to_datetime( + arg, + errors, + dayfirst, + yearfirst, + utc, + format, + exact, + unit, + infer_datetime_format, + origin, + cache, + ) + if isinstance(res, pandas.Series): + res = pd.Series(res) + elif not is_scalar(res): + res = pd.Index(res) + return res + + # handle modin objs if unit and unit not in VALID_TO_DATETIME_UNIT: raise ValueError(f"Unrecognized unit {unit}") @@ -1795,15 +1812,8 @@ def to_datetime( argument="cache", message="cache parameter is ignored with Snowflake backend, i.e., no caching will be applied", ) - arg_is_scalar = is_scalar(arg) - - if not isinstance(arg, (DataFrame, Series, pd.Index)): - # Turn dictionary like arg into pd.DataFrame and list-like or scalar to - # pd.Index. - arg = [arg] if arg_is_scalar else arg - arg = DataFrame(arg) if isinstance(arg, dict) else pd.Index(arg) - series_or_index = arg._to_datetime( + return arg._to_datetime( errors=errors, dayfirst=dayfirst, yearfirst=yearfirst, @@ -1814,13 +1824,6 @@ def to_datetime( infer_datetime_format=infer_datetime_format, origin=origin, ) - if arg_is_scalar: - # Calling squeeze directly on Snowpark pandas Series makes an unnecessary - # count sql call. To avoid that we convert Snowpark pandas Series to Native - # pandas series first. - # Note: When arg_is_scalar is True 'series_or_index' is always an Index. - return series_or_index.to_series().to_pandas().squeeze() - return series_or_index @snowpark_pandas_telemetry_standalone_function_decorator diff --git a/src/snowflake/snowpark/modin/plugin/_internal/timestamp_utils.py b/src/snowflake/snowpark/modin/plugin/_internal/timestamp_utils.py index 4860baf4acb..af1a2211e57 100644 --- a/src/snowflake/snowpark/modin/plugin/_internal/timestamp_utils.py +++ b/src/snowflake/snowpark/modin/plugin/_internal/timestamp_utils.py @@ -123,6 +123,11 @@ the specified time units. """ +AUTO_FORMAT_WARNING_MSG = """Snowflake automatic format detection is used when a format is not provided. +In this case Snowflake's auto format may yield different result values compared to pandas. +See https://docs.snowflake.com/en/sql-reference/date-time-input-output#supported-formats-for-auto-detection for details +""" + # TODO: SNOW-1127160: support other units VALID_TO_DATETIME_UNIT = ["D", "s", "ms", "us", "ns"] @@ -304,9 +309,7 @@ def generate_timestamp_col( if isinstance(datatype, (StringType, VariantType)): WarningMessage.mismatch_with_pandas( "to_datetime", - "Snowpark pandas to_datetime uses Snowflake's automatic format " - "detection to convert string to datetime when a format is not provided. " - "In this case Snowflake's auto format may yield different result values compared to pandas.", + AUTO_FORMAT_WARNING_MSG.replace("\n", ""), ) from snowflake.snowpark.modin.plugin._internal.type_utils import ( diff --git a/src/snowflake/snowpark/modin/plugin/utils/warning_message.py b/src/snowflake/snowpark/modin/plugin/utils/warning_message.py index 80805d72ac7..12b53ac20c0 100644 --- a/src/snowflake/snowpark/modin/plugin/utils/warning_message.py +++ b/src/snowflake/snowpark/modin/plugin/utils/warning_message.py @@ -51,7 +51,7 @@ def ignored_argument(cls, operation: str, argument: str, message: str) -> None: @classmethod def mismatch_with_pandas(cls, operation: str, message: str) -> None: cls.single_warning( - f"`{operation}` implementation has mismatches with pandas:\n{message}." + f"`{operation}` implementation may has mismatches with pandas:\n{message}." ) @classmethod diff --git a/tests/integ/modin/frame/test_astype.py b/tests/integ/modin/frame/test_astype.py index 0c1d1faa31c..8007b264b4e 100644 --- a/tests/integ/modin/frame/test_astype.py +++ b/tests/integ/modin/frame/test_astype.py @@ -126,7 +126,7 @@ def test_astype_to_timedelta(dtype): eval_snowpark_pandas_result(snow_df, native_df, lambda df: df.astype(dtype)) -@sql_count_checker(query_count=2) +@sql_count_checker(query_count=0) def test_astype_to_timedelta_negative(): native_datetime_df = native_pd.DataFrame( data={"col1": [pd.to_datetime("2000-01-01"), pd.to_datetime("2001-01-01")]} diff --git a/tests/integ/modin/tools/test_to_datetime.py b/tests/integ/modin/tools/test_to_datetime.py index a0ac55958a9..1ea3445d15a 100644 --- a/tests/integ/modin/tools/test_to_datetime.py +++ b/tests/integ/modin/tools/test_to_datetime.py @@ -104,7 +104,7 @@ def test_to_datetime_format(self, cache, box, format, expected): ["1/3/2000", "20000103", "%m/%d/%Y"], ], ) - @sql_count_checker(query_count=1) + @sql_count_checker(query_count=0) def test_to_datetime_format_scalar(self, cache, arg, expected, format): result = to_datetime(arg, format=format, cache=cache) expected = Timestamp(expected) @@ -120,7 +120,7 @@ def test_to_datetime_format_scalar(self, cache, arg, expected, format): def test_to_datetime_format_unimplemented(self, cache, arg, format): with pytest.raises(NotImplementedError): assert to_datetime( - arg, format=format, cache=cache + pd.Index([arg]), format=format, cache=cache ) == native_pd.to_datetime(arg, format=format, cache=cache) @pytest.mark.parametrize( @@ -135,7 +135,7 @@ def test_to_datetime_format_not_match(self, cache, arg, format): SnowparkSQLException, match=f"Can't parse '{arg}' as timestamp with format 'DD/MM/YYYY'", ): - to_datetime(arg, format=format, cache=cache) + to_datetime(pd.Index([arg]), format=format, cache=cache).to_pandas() @sql_count_checker(query_count=2, udf_count=0) def test_to_datetime_format_YYYYMMDD(self, cache): @@ -302,7 +302,7 @@ def test_to_datetime_format_YYYYMMDD_overflow(self, input, expected): @sql_count_checker(query_count=2) def test_to_datetime_with_NA(self, data, format, expected): # GH#42957 - result = to_datetime(data, format=format) + result = to_datetime(pd.Index(data), format=format) assert_index_equal(result, pd.DatetimeIndex(expected)) @sql_count_checker(query_count=1, udf_count=0) @@ -328,7 +328,7 @@ def test_to_datetime_format_integer_year_month(self, cache): result = to_datetime(ser, format="%Y%m", cache=cache) assert_series_equal(result, expected, check_index_type=False) - @sql_count_checker(query_count=1) + @sql_count_checker(query_count=0) def test_to_datetime_format_microsecond(self, cache): month_abbr = calendar.month_abbr[4] val = f"01-{month_abbr}-2011 00:00:01.978" @@ -384,7 +384,9 @@ def test_to_datetime_format_microsecond(self, cache): ) @sql_count_checker(query_count=1) def test_to_datetime_format_time(self, cache, value, format, dt): - assert to_datetime(value, format=format, cache=cache) == dt + assert ( + to_datetime(pd.Index([value]), format=format, cache=cache).to_pandas() == dt + ) @sql_count_checker(query_count=0) def test_to_datetime_with_non_exact_unimplemented(self, cache): @@ -407,9 +409,9 @@ def test_to_datetime_with_non_exact_unimplemented(self, cache): "2012-01-01 09:00:00.001000000", ], ) - @sql_count_checker(query_count=2) + @sql_count_checker(query_count=1, join_count=1) def test_parse_nanoseconds_with_formula(self, cache, arg): - + arg = pd.Index([arg]) # GH8989 # truncating the nanoseconds when a format was provided expected = to_datetime(arg, cache=cache) @@ -426,7 +428,10 @@ def test_parse_nanoseconds_with_formula(self, cache, arg): @sql_count_checker(query_count=0) def test_to_datetime_format_weeks(self, value, fmt, expected, cache): with pytest.raises(NotImplementedError): - assert to_datetime(value, format=fmt, cache=cache) == expected + assert ( + to_datetime(pd.Index([value]), format=fmt, cache=cache).to_pandas()[0] + == expected + ) @pytest.mark.parametrize( "fmt,dates,expected_dates", @@ -497,7 +502,7 @@ def test_to_datetime_parse_tzname_or_tzoffset_fallback( ): # GH 13486 with pytest.raises(NotImplementedError): - to_datetime(dates, format=fmt).to_list() + to_datetime(pd.Index(dates), format=fmt).to_list() @sql_count_checker(query_count=4) def test_to_datetime_parse_tzname_or_tzoffset_different_tz_to_utc(self): @@ -535,7 +540,7 @@ def test_to_datetime_parse_timezone_malformed(self, offset): SnowparkSQLException, match="Can't parse|as timestamp with format 'YYYY-MM-DD HH24:MI:SS TZHTZM'", ): - to_datetime([date], format=fmt).to_pandas() + to_datetime(pd.Index([date]), format=fmt).to_pandas() @sql_count_checker(query_count=0) def test_to_datetime_parse_timezone_keeps_name(self): @@ -551,7 +556,7 @@ class TestToDatetime: def test_to_datetime_mixed_datetime_and_string(self): d1 = datetime(2020, 1, 1, 17, tzinfo=timezone(-timedelta(hours=1))) d2 = datetime(2020, 1, 1, 18, tzinfo=timezone(-timedelta(hours=1))) - res = to_datetime(["2020-01-01 17:00:00 -0100", d2]) + res = to_datetime(pd.Index(["2020-01-01 17:00:00 -0100", d2])) # The input will become a series with variant type and the timezone is unaware by the Snowflake engine, so the # result ignores the timezone by default expected = native_pd.DatetimeIndex( @@ -559,7 +564,7 @@ def test_to_datetime_mixed_datetime_and_string(self): ) assert_index_equal(res, expected) # Set utc=True to make sure timezone aware in to_datetime - res = to_datetime(["2020-01-01 17:00:00 -0100", d2], utc=True) + res = to_datetime(pd.Index(["2020-01-01 17:00:00 -0100", d2]), utc=True) expected = pd.DatetimeIndex([d1, d2]) assert_index_equal(res, expected) @@ -584,15 +589,15 @@ def test_to_datetime_dtarr(self, tz): @sql_count_checker(query_count=1) def test_to_datetime_pydatetime(self): - actual = to_datetime(datetime(2008, 1, 15)) + actual = to_datetime(pd.Index([datetime(2008, 1, 15)])) assert actual == np.datetime64(datetime(2008, 1, 15)) @pytest.mark.parametrize( "dt", [np.datetime64("2000-01-01"), np.datetime64("2000-01-02")] ) - @sql_count_checker(query_count=1) + @sql_count_checker(query_count=1, join_count=2) def test_to_datetime_dt64s(self, cache, dt): - assert to_datetime(dt, cache=cache) == Timestamp(dt) + assert to_datetime(pd.Index([dt]), cache=cache)[0] == Timestamp(dt) @pytest.mark.parametrize( "sample", @@ -831,11 +836,11 @@ def test_to_datetime_df_negative(self): {"arg": 1490195805433502912, "unit": "ns"}, ], ) - @sql_count_checker(query_count=1) + @sql_count_checker(query_count=1, join_count=2) def test_to_datetime_unit(self, sample): - assert pd.to_datetime( - sample["arg"], unit=sample["unit"] - ) == native_pd.to_datetime(sample["arg"], unit=sample["unit"]) + assert pd.to_datetime(pd.Index([sample["arg"]]), unit=sample["unit"])[ + 0 + ] == native_pd.to_datetime(sample["arg"], unit=sample["unit"]) @sql_count_checker(query_count=0) def test_to_datetime_unit_negative(self): diff --git a/tests/notebooks/modin/MIMICHealthcareDemo.ipynb b/tests/notebooks/modin/MIMICHealthcareDemo.ipynb index 95a75e3c858..b0a95e8df29 100644 --- a/tests/notebooks/modin/MIMICHealthcareDemo.ipynb +++ b/tests/notebooks/modin/MIMICHealthcareDemo.ipynb @@ -34,10 +34,10 @@ "id": "90243e71-4cf0-4971-a95e-3f29e12449fc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:35.536214Z", - "iopub.status.busy": "2024-08-28T17:27:35.535897Z", - "iopub.status.idle": "2024-08-28T17:27:36.977905Z", - "shell.execute_reply": "2024-08-28T17:27:36.977472Z" + "iopub.execute_input": "2024-08-29T16:40:24.644704Z", + "iopub.status.busy": "2024-08-29T16:40:24.644472Z", + "iopub.status.idle": "2024-08-29T16:40:26.085494Z", + "shell.execute_reply": "2024-08-29T16:40:26.085102Z" }, "tags": [] }, @@ -70,10 +70,10 @@ "id": "c309356f-14f8-469a-9257-b944b8951410", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:36.980268Z", - "iopub.status.busy": "2024-08-28T17:27:36.980102Z", - "iopub.status.idle": "2024-08-28T17:27:45.691050Z", - "shell.execute_reply": "2024-08-28T17:27:45.690724Z" + "iopub.execute_input": "2024-08-29T16:40:26.087990Z", + "iopub.status.busy": "2024-08-29T16:40:26.087790Z", + "iopub.status.idle": "2024-08-29T16:40:34.836471Z", + "shell.execute_reply": "2024-08-29T16:40:34.834364Z" }, "tags": [] }, @@ -97,10 +97,10 @@ "id": "68823bb5-fcd1-4f92-b767-e5ac83dc3df7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:45.693385Z", - "iopub.status.busy": "2024-08-28T17:27:45.693251Z", - "iopub.status.idle": "2024-08-28T17:27:46.018818Z", - "shell.execute_reply": "2024-08-28T17:27:46.018231Z" + "iopub.execute_input": "2024-08-29T16:40:34.850532Z", + "iopub.status.busy": "2024-08-29T16:40:34.849869Z", + "iopub.status.idle": "2024-08-29T16:40:35.624012Z", + "shell.execute_reply": "2024-08-29T16:40:35.623263Z" }, "tags": [] }, @@ -145,10 +145,10 @@ "id": "9a7fc3b9-50db-49da-a18a-8865a3356f31", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:46.022960Z", - "iopub.status.busy": "2024-08-28T17:27:46.022736Z", - "iopub.status.idle": "2024-08-28T17:27:49.916885Z", - "shell.execute_reply": "2024-08-28T17:27:49.916624Z" + "iopub.execute_input": "2024-08-29T16:40:35.631774Z", + "iopub.status.busy": "2024-08-29T16:40:35.631316Z", + "iopub.status.idle": "2024-08-29T16:40:42.684730Z", + "shell.execute_reply": "2024-08-29T16:40:42.684038Z" }, "tags": [] }, @@ -331,10 +331,10 @@ "id": "7692a0af-de2f-42d1-9110-15ce104c2c5c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:49.918782Z", - "iopub.status.busy": "2024-08-28T17:27:49.918678Z", - "iopub.status.idle": "2024-08-28T17:27:50.561066Z", - "shell.execute_reply": "2024-08-28T17:27:50.560658Z" + "iopub.execute_input": "2024-08-29T16:40:42.689692Z", + "iopub.status.busy": "2024-08-29T16:40:42.689423Z", + "iopub.status.idle": "2024-08-29T16:40:43.808563Z", + "shell.execute_reply": "2024-08-29T16:40:43.807873Z" }, "tags": [] }, @@ -390,10 +390,10 @@ "id": "5344da61-915d-43cf-894a-484876450748", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:50.563582Z", - "iopub.status.busy": "2024-08-28T17:27:50.563395Z", - "iopub.status.idle": "2024-08-28T17:27:50.768782Z", - "shell.execute_reply": "2024-08-28T17:27:50.768309Z" + "iopub.execute_input": "2024-08-29T16:40:43.814010Z", + "iopub.status.busy": "2024-08-29T16:40:43.813526Z", + "iopub.status.idle": "2024-08-29T16:40:44.240194Z", + "shell.execute_reply": "2024-08-29T16:40:44.239517Z" } }, "outputs": [ @@ -401,8 +401,8 @@ "name": "stderr", "output_type": "stream", "text": [ - "WARNING:snowflake.snowpark.modin.plugin.utils.warning_message:`to_datetime` implementation has mismatches with pandas:\n", - "Snowpark pandas to_datetime uses Snowflake's automatic format detection to convert string to datetime when a format is not provided. In this case Snowflake's auto format may yield different result values compared to pandas..\n" + "WARNING:snowflake.snowpark.modin.plugin.utils.warning_message:`to_datetime` implementation may has mismatches with pandas:\n", + "Snowflake automatic format detection is used when a format is not provided. In this case Snowflake's auto format may yield different result values compared to pandas.See https://docs.snowflake.com/en/sql-reference/date-time-input-output#supported-formats-for-auto-detection for details.\n" ] } ], @@ -428,10 +428,10 @@ "id": "5f72ca6b-ae9a-4a68-a391-83b065785004", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:50.770869Z", - "iopub.status.busy": "2024-08-28T17:27:50.770722Z", - "iopub.status.idle": "2024-08-28T17:27:50.888703Z", - "shell.execute_reply": "2024-08-28T17:27:50.888387Z" + "iopub.execute_input": "2024-08-29T16:40:44.245058Z", + "iopub.status.busy": "2024-08-29T16:40:44.244761Z", + "iopub.status.idle": "2024-08-29T16:40:44.425084Z", + "shell.execute_reply": "2024-08-29T16:40:44.424460Z" }, "tags": [] }, @@ -446,10 +446,10 @@ "id": "ecc19928-1d3a-49b8-bc0d-4270e53bfc4c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:50.890752Z", - "iopub.status.busy": "2024-08-28T17:27:50.890619Z", - "iopub.status.idle": "2024-08-28T17:27:51.188395Z", - "shell.execute_reply": "2024-08-28T17:27:51.188083Z" + "iopub.execute_input": "2024-08-29T16:40:44.429636Z", + "iopub.status.busy": "2024-08-29T16:40:44.429225Z", + "iopub.status.idle": "2024-08-29T16:40:45.012044Z", + "shell.execute_reply": "2024-08-29T16:40:45.011426Z" } }, "outputs": [], @@ -471,10 +471,10 @@ "id": "50c62f3f-a804-4efd-89bb-cf689a870055", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:51.190704Z", - "iopub.status.busy": "2024-08-28T17:27:51.190570Z", - "iopub.status.idle": "2024-08-28T17:27:51.563926Z", - "shell.execute_reply": "2024-08-28T17:27:51.563299Z" + "iopub.execute_input": "2024-08-29T16:40:45.016473Z", + "iopub.status.busy": "2024-08-29T16:40:45.016221Z", + "iopub.status.idle": "2024-08-29T16:40:45.526404Z", + "shell.execute_reply": "2024-08-29T16:40:45.526095Z" }, "tags": [] }, @@ -499,10 +499,10 @@ "id": "66ac1e04-4581-4292-8b7a-b88faa76edf5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:51.567168Z", - "iopub.status.busy": "2024-08-28T17:27:51.566843Z", - "iopub.status.idle": "2024-08-28T17:27:52.325449Z", - "shell.execute_reply": "2024-08-28T17:27:52.325162Z" + "iopub.execute_input": "2024-08-29T16:40:45.528553Z", + "iopub.status.busy": "2024-08-29T16:40:45.528423Z", + "iopub.status.idle": "2024-08-29T16:40:47.019221Z", + "shell.execute_reply": "2024-08-29T16:40:47.018940Z" }, "tags": [] }, @@ -569,10 +569,10 @@ "id": "17b76fe7-4d6d-4eb4-bebe-55cc643b69f3", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:52.327478Z", - "iopub.status.busy": "2024-08-28T17:27:52.327310Z", - "iopub.status.idle": "2024-08-28T17:27:55.549227Z", - "shell.execute_reply": "2024-08-28T17:27:55.548770Z" + "iopub.execute_input": "2024-08-29T16:40:47.026381Z", + "iopub.status.busy": "2024-08-29T16:40:47.026174Z", + "iopub.status.idle": "2024-08-29T16:40:50.378563Z", + "shell.execute_reply": "2024-08-29T16:40:50.377352Z" }, "tags": [] }, @@ -595,10 +595,10 @@ "id": "8514feca-f6b3-4186-bd32-ef07ba8efed4", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:55.552055Z", - "iopub.status.busy": "2024-08-28T17:27:55.551878Z", - "iopub.status.idle": "2024-08-28T17:27:55.941773Z", - "shell.execute_reply": "2024-08-28T17:27:55.941284Z" + "iopub.execute_input": "2024-08-29T16:40:50.387486Z", + "iopub.status.busy": "2024-08-29T16:40:50.387033Z", + "iopub.status.idle": "2024-08-29T16:40:51.035097Z", + "shell.execute_reply": "2024-08-29T16:40:51.033901Z" }, "tags": [] }, @@ -613,10 +613,10 @@ "id": "bf8025c3-8657-41a7-8feb-6afab251ccfd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:55.944225Z", - "iopub.status.busy": "2024-08-28T17:27:55.944051Z", - "iopub.status.idle": "2024-08-28T17:27:56.081283Z", - "shell.execute_reply": "2024-08-28T17:27:56.080891Z" + "iopub.execute_input": "2024-08-29T16:40:51.040654Z", + "iopub.status.busy": "2024-08-29T16:40:51.040299Z", + "iopub.status.idle": "2024-08-29T16:40:51.348149Z", + "shell.execute_reply": "2024-08-29T16:40:51.347282Z" }, "tags": [] }, @@ -642,10 +642,10 @@ "id": "60ba61f7-fa60-4a6d-8b06-1282d2f64382", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:56.083562Z", - "iopub.status.busy": "2024-08-28T17:27:56.083425Z", - "iopub.status.idle": "2024-08-28T17:27:56.085148Z", - "shell.execute_reply": "2024-08-28T17:27:56.084867Z" + "iopub.execute_input": "2024-08-29T16:40:51.353969Z", + "iopub.status.busy": "2024-08-29T16:40:51.353565Z", + "iopub.status.idle": "2024-08-29T16:40:51.356469Z", + "shell.execute_reply": "2024-08-29T16:40:51.356062Z" }, "tags": [] }, @@ -661,10 +661,10 @@ "id": "5cdeb9af-660a-4daa-98c5-f9e86699e9bd", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:56.086699Z", - "iopub.status.busy": "2024-08-28T17:27:56.086595Z", - "iopub.status.idle": "2024-08-28T17:27:57.259523Z", - "shell.execute_reply": "2024-08-28T17:27:57.259142Z" + "iopub.execute_input": "2024-08-29T16:40:51.359362Z", + "iopub.status.busy": "2024-08-29T16:40:51.359124Z", + "iopub.status.idle": "2024-08-29T16:40:52.909601Z", + "shell.execute_reply": "2024-08-29T16:40:52.908550Z" }, "tags": [] }, @@ -704,10 +704,10 @@ "id": "2b704957-4b20-41a9-abbb-1d963a0ea0d2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:57.261881Z", - "iopub.status.busy": "2024-08-28T17:27:57.261730Z", - "iopub.status.idle": "2024-08-28T17:27:57.985080Z", - "shell.execute_reply": "2024-08-28T17:27:57.984756Z" + "iopub.execute_input": "2024-08-29T16:40:52.922170Z", + "iopub.status.busy": "2024-08-29T16:40:52.921546Z", + "iopub.status.idle": "2024-08-29T16:40:53.543607Z", + "shell.execute_reply": "2024-08-29T16:40:53.542739Z" }, "tags": [] }, @@ -754,10 +754,10 @@ "id": "1748639f-04b5-45e6-b836-2433b66fa29d", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:57.986888Z", - "iopub.status.busy": "2024-08-28T17:27:57.986758Z", - "iopub.status.idle": "2024-08-28T17:27:59.498296Z", - "shell.execute_reply": "2024-08-28T17:27:59.498013Z" + "iopub.execute_input": "2024-08-29T16:40:53.548796Z", + "iopub.status.busy": "2024-08-29T16:40:53.548456Z", + "iopub.status.idle": "2024-08-29T16:40:54.675244Z", + "shell.execute_reply": "2024-08-29T16:40:54.674843Z" }, "tags": [] }, @@ -799,10 +799,10 @@ "id": "24a34764-f442-4cc1-8b87-ed96ace34651", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:59.500159Z", - "iopub.status.busy": "2024-08-28T17:27:59.500025Z", - "iopub.status.idle": "2024-08-28T17:28:00.076867Z", - "shell.execute_reply": "2024-08-28T17:28:00.076522Z" + "iopub.execute_input": "2024-08-29T16:40:54.678970Z", + "iopub.status.busy": "2024-08-29T16:40:54.678677Z", + "iopub.status.idle": "2024-08-29T16:40:55.564685Z", + "shell.execute_reply": "2024-08-29T16:40:55.563846Z" }, "tags": [] }, @@ -834,10 +834,10 @@ "id": "96753257-acd4-4ba9-b81b-19dc0a2af53c", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:28:00.079097Z", - "iopub.status.busy": "2024-08-28T17:28:00.078936Z", - "iopub.status.idle": "2024-08-28T17:28:00.081233Z", - "shell.execute_reply": "2024-08-28T17:28:00.080958Z" + "iopub.execute_input": "2024-08-29T16:40:55.569627Z", + "iopub.status.busy": "2024-08-29T16:40:55.569318Z", + "iopub.status.idle": "2024-08-29T16:40:55.573320Z", + "shell.execute_reply": "2024-08-29T16:40:55.572780Z" }, "tags": [] }, @@ -871,10 +871,10 @@ "id": "2d26eee2-671a-4ff8-ac22-62612c1a1ced", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:28:00.083739Z", - "iopub.status.busy": "2024-08-28T17:28:00.083616Z", - "iopub.status.idle": "2024-08-28T17:28:00.944153Z", - "shell.execute_reply": "2024-08-28T17:28:00.943809Z" + "iopub.execute_input": "2024-08-29T16:40:55.577801Z", + "iopub.status.busy": "2024-08-29T16:40:55.577569Z", + "iopub.status.idle": "2024-08-29T16:40:56.955618Z", + "shell.execute_reply": "2024-08-29T16:40:56.955119Z" }, "tags": [] }, @@ -916,10 +916,10 @@ "id": "21aef8ae-47d8-4c77-8e04-270304c41d4e", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:28:00.946550Z", - "iopub.status.busy": "2024-08-28T17:28:00.946409Z", - "iopub.status.idle": "2024-08-28T17:28:02.622587Z", - "shell.execute_reply": "2024-08-28T17:28:02.622199Z" + "iopub.execute_input": "2024-08-29T16:40:56.959044Z", + "iopub.status.busy": "2024-08-29T16:40:56.958826Z", + "iopub.status.idle": "2024-08-29T16:40:59.648598Z", + "shell.execute_reply": "2024-08-29T16:40:59.648071Z" }, "tags": [] }, @@ -958,10 +958,10 @@ "id": "2d11b951-5b4c-4a98-ae4c-883fbccd56a7", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:28:02.624633Z", - "iopub.status.busy": "2024-08-28T17:28:02.624483Z", - "iopub.status.idle": "2024-08-28T17:28:02.933061Z", - "shell.execute_reply": "2024-08-28T17:28:02.932626Z" + "iopub.execute_input": "2024-08-29T16:40:59.652263Z", + "iopub.status.busy": "2024-08-29T16:40:59.652056Z", + "iopub.status.idle": "2024-08-29T16:41:00.133647Z", + "shell.execute_reply": "2024-08-29T16:41:00.132806Z" }, "tags": [] }, @@ -977,10 +977,10 @@ "id": "35155531-c8ff-4ed1-9a3e-e457176f9f20", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:28:02.935312Z", - "iopub.status.busy": "2024-08-28T17:28:02.935204Z", - "iopub.status.idle": "2024-08-28T17:28:04.421197Z", - "shell.execute_reply": "2024-08-28T17:28:04.420876Z" + "iopub.execute_input": "2024-08-29T16:41:00.137957Z", + "iopub.status.busy": "2024-08-29T16:41:00.137698Z", + "iopub.status.idle": "2024-08-29T16:41:02.302730Z", + "shell.execute_reply": "2024-08-29T16:41:02.301884Z" }, "tags": [] }, @@ -1139,10 +1139,10 @@ "id": "b8c41494-755a-485b-8119-9dfff98213df", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:28:04.423275Z", - "iopub.status.busy": "2024-08-28T17:28:04.423133Z", - "iopub.status.idle": "2024-08-28T17:28:05.150707Z", - "shell.execute_reply": "2024-08-28T17:28:05.150379Z" + "iopub.execute_input": "2024-08-29T16:41:02.308706Z", + "iopub.status.busy": "2024-08-29T16:41:02.308243Z", + "iopub.status.idle": "2024-08-29T16:41:03.482917Z", + "shell.execute_reply": "2024-08-29T16:41:03.482167Z" }, "tags": [] }, @@ -1192,10 +1192,10 @@ "metadata": { "collapsed": false, "execution": { - "iopub.execute_input": "2024-08-28T17:28:05.152844Z", - "iopub.status.busy": "2024-08-28T17:28:05.152694Z", - "iopub.status.idle": "2024-08-28T17:28:07.249455Z", - "shell.execute_reply": "2024-08-28T17:28:07.248760Z" + "iopub.execute_input": "2024-08-29T16:41:03.488170Z", + "iopub.status.busy": "2024-08-29T16:41:03.487705Z", + "iopub.status.idle": "2024-08-29T16:41:07.012312Z", + "shell.execute_reply": "2024-08-29T16:41:07.011813Z" }, "jupyter": { "outputs_hidden": false @@ -1212,10 +1212,10 @@ "id": "719049a4-0a5b-45da-bbd5-8ff073c95a93", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:28:07.253088Z", - "iopub.status.busy": "2024-08-28T17:28:07.252690Z", - "iopub.status.idle": "2024-08-28T17:28:07.972094Z", - "shell.execute_reply": "2024-08-28T17:28:07.971764Z" + "iopub.execute_input": "2024-08-29T16:41:07.015936Z", + "iopub.status.busy": "2024-08-29T16:41:07.015742Z", + "iopub.status.idle": "2024-08-29T16:41:11.538424Z", + "shell.execute_reply": "2024-08-29T16:41:11.538056Z" }, "tags": [] }, @@ -1240,10 +1240,10 @@ "id": "9e1f2052-7405-496c-b4de-76e031978cb5", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:28:07.974120Z", - "iopub.status.busy": "2024-08-28T17:28:07.973931Z", - "iopub.status.idle": "2024-08-28T17:28:07.979210Z", - "shell.execute_reply": "2024-08-28T17:28:07.978966Z" + "iopub.execute_input": "2024-08-29T16:41:11.540766Z", + "iopub.status.busy": "2024-08-29T16:41:11.540536Z", + "iopub.status.idle": "2024-08-29T16:41:11.550018Z", + "shell.execute_reply": "2024-08-29T16:41:11.549757Z" }, "tags": [] }, @@ -1678,10 +1678,10 @@ "id": "dcb50a0d-3f66-4376-a383-597789f83fa0", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:28:07.980853Z", - "iopub.status.busy": "2024-08-28T17:28:07.980748Z", - "iopub.status.idle": "2024-08-28T17:28:07.983038Z", - "shell.execute_reply": "2024-08-28T17:28:07.982709Z" + "iopub.execute_input": "2024-08-29T16:41:11.560760Z", + "iopub.status.busy": "2024-08-29T16:41:11.560616Z", + "iopub.status.idle": "2024-08-29T16:41:11.565101Z", + "shell.execute_reply": "2024-08-29T16:41:11.564820Z" }, "tags": [] }, @@ -1704,10 +1704,10 @@ "id": "4993b18c-7d2a-49b6-96f5-b4a7c6a38cc2", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:28:07.984580Z", - "iopub.status.busy": "2024-08-28T17:28:07.984481Z", - "iopub.status.idle": "2024-08-28T17:28:08.048040Z", - "shell.execute_reply": "2024-08-28T17:28:08.047710Z" + "iopub.execute_input": "2024-08-29T16:41:11.567067Z", + "iopub.status.busy": "2024-08-29T16:41:11.566921Z", + "iopub.status.idle": "2024-08-29T16:41:11.647209Z", + "shell.execute_reply": "2024-08-29T16:41:11.646868Z" }, "tags": [] }, @@ -1715,7 +1715,7 @@ { "data": { "text/plain": [ - "" + "" ] }, "execution_count": 29, @@ -1747,10 +1747,10 @@ "id": "0c6fde6b-1126-4625-9c6e-7223eb97c30b", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:28:08.049898Z", - "iopub.status.busy": "2024-08-28T17:28:08.049780Z", - "iopub.status.idle": "2024-08-28T17:28:08.052183Z", - "shell.execute_reply": "2024-08-28T17:28:08.051914Z" + "iopub.execute_input": "2024-08-29T16:41:11.651315Z", + "iopub.status.busy": "2024-08-29T16:41:11.651183Z", + "iopub.status.idle": "2024-08-29T16:41:11.653684Z", + "shell.execute_reply": "2024-08-29T16:41:11.653385Z" }, "tags": [] }, diff --git a/tests/notebooks/modin/TimeSeriesTesting.ipynb b/tests/notebooks/modin/TimeSeriesTesting.ipynb index b21dc046b66..de00293a1d3 100644 --- a/tests/notebooks/modin/TimeSeriesTesting.ipynb +++ b/tests/notebooks/modin/TimeSeriesTesting.ipynb @@ -3,9 +3,16 @@ { "cell_type": "markdown", "id": "143e5d4a-ca70-4ac8-a61e-be7c93c17d20", - "metadata": {}, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "source": [ - "# Snowpark pandas Time series / date functionality" + "# Snowpark pandas Time series / date functionality\n", + "See https://pandas.pydata.org/docs/user_guide/timeseries.html as a reference." ] }, { @@ -14,10 +21,10 @@ "id": "5ece8277-dc52-40f3-913f-1a3145df6bdc", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:35.535408Z", - "iopub.status.busy": "2024-08-28T17:27:35.535052Z", - "iopub.status.idle": "2024-08-28T17:27:36.951326Z", - "shell.execute_reply": "2024-08-28T17:27:36.950877Z" + "iopub.execute_input": "2024-08-29T18:27:58.565509Z", + "iopub.status.busy": "2024-08-29T18:27:58.565000Z", + "iopub.status.idle": "2024-08-29T18:28:00.069481Z", + "shell.execute_reply": "2024-08-29T18:28:00.068969Z" } }, "outputs": [], @@ -41,10 +48,10 @@ "id": "c127fb50-c570-46fb-a074-6e8eb3ede058", "metadata": { "execution": { - "iopub.execute_input": "2024-08-28T17:27:36.953723Z", - "iopub.status.busy": "2024-08-28T17:27:36.953532Z", - "iopub.status.idle": "2024-08-28T17:27:36.955730Z", - "shell.execute_reply": "2024-08-28T17:27:36.955323Z" + "iopub.execute_input": "2024-08-29T18:28:00.073049Z", + "iopub.status.busy": "2024-08-29T18:28:00.072764Z", + "iopub.status.idle": "2024-08-29T18:28:00.075028Z", + "shell.execute_reply": "2024-08-29T18:28:00.074655Z" } }, "outputs": [], @@ -56,9 +63,15 @@ { "cell_type": "markdown", "id": "02d7afa0-0224-4033-b2c7-465b67642201", - "metadata": {}, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "source": [ - "### Parsing time series information from various sources and formats" + "##### Parsing time series information from various sources and formats" ] }, { @@ -66,22 +79,19 @@ "execution_count": 3, "id": "8d5f4a0a-fe5c-4a94-94ba-f16d258f92a6", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:36.958090Z", - "iopub.status.busy": "2024-08-28T17:27:36.957962Z", - "iopub.status.idle": "2024-08-28T17:27:37.441073Z", - "shell.execute_reply": "2024-08-28T17:27:37.440761Z" - } + "iopub.execute_input": "2024-08-29T18:28:00.077667Z", + "iopub.status.busy": "2024-08-29T18:28:00.077514Z", + "iopub.status.idle": "2024-08-29T18:28:00.772766Z", + "shell.execute_reply": "2024-08-29T18:28:00.771973Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "`to_datetime` implementation has mismatches with pandas:\n", - "Snowpark pandas to_datetime uses Snowflake's automatic format detection to convert string to datetime when a format is not provided. In this case Snowflake's auto format may yield different result values compared to pandas..\n" - ] - }, { "data": { "text/plain": [ @@ -103,9 +113,15 @@ { "cell_type": "markdown", "id": "1df6a98f-a79b-4e90-b314-0cdf4f94fbfd", - "metadata": {}, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "source": [ - "### Generate sequences of fixed-frequency dates and time spans" + "##### Generate sequences of fixed-frequency dates and time spans" ] }, { @@ -113,12 +129,17 @@ "execution_count": 4, "id": "28d01637-1093-43ea-a791-bc167243530e", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:37.443821Z", - "iopub.status.busy": "2024-08-28T17:27:37.443686Z", - "iopub.status.idle": "2024-08-28T17:27:37.973506Z", - "shell.execute_reply": "2024-08-28T17:27:37.973040Z" - } + "iopub.execute_input": "2024-08-29T18:28:00.780163Z", + "iopub.status.busy": "2024-08-29T18:28:00.779822Z", + "iopub.status.idle": "2024-08-29T18:28:01.624833Z", + "shell.execute_reply": "2024-08-29T18:28:01.623535Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ { @@ -142,9 +163,15 @@ { "cell_type": "markdown", "id": "727ff6dd-9af1-4abd-a276-6042bf3b6878", - "metadata": {}, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "source": [ - "### Manipulating and converting date times with timezone information" + "##### Manipulating and converting date times with timezone information" ] }, { @@ -152,17 +179,42 @@ "execution_count": 5, "id": "1f2c79bc-2a9e-41f0-ab36-44fcc20d119a", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:37.976832Z", - "iopub.status.busy": "2024-08-28T17:27:37.976629Z", - "iopub.status.idle": "2024-08-28T17:27:37.978940Z", - "shell.execute_reply": "2024-08-28T17:27:37.978566Z" - } + "iopub.execute_input": "2024-08-29T18:28:01.631010Z", + "iopub.status.busy": "2024-08-29T18:28:01.630599Z", + "iopub.status.idle": "2024-08-29T18:28:01.826476Z", + "shell.execute_reply": "2024-08-29T18:28:01.826115Z" + }, + "scrolled": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] }, - "outputs": [], + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "Snowpark pandas does not yet support the method DatetimeIndex.tz_localize", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[5], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# TODO SNOW-1635620: uncomment when TimeDelta is implemented\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m dti \u001b[38;5;241m=\u001b[39m \u001b[43mdti\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtz_localize\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mUTC\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:414\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_method_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 409\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 412\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 413\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 414\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 415\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_method_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_method_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:117\u001b[0m, in \u001b[0;36m_make_not_implemented_decorator..not_implemented_decorator..make_error_raiser..raise_not_implemented_method_error\u001b[0;34m(cls_or_self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 116\u001b[0m non_null_attribute_prefix \u001b[38;5;241m=\u001b[39m attribute_prefix\n\u001b[0;32m--> 117\u001b[0m \u001b[43mErrorMessage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnot_implemented\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 118\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessage\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43m_snowpark_pandas_does_not_yet_support\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m method \u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mnon_null_attribute_prefix\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m.\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mname\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 119\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:163\u001b[0m, in \u001b[0;36mErrorMessage.not_implemented\u001b[0;34m(cls, message)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnot_implemented\u001b[39m(\u001b[38;5;28mcls\u001b[39m, message: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NoReturn: \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 162\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNotImplementedError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(message)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: Snowpark pandas does not yet support the method DatetimeIndex.tz_localize" + ] + } + ], "source": [ "# TODO SNOW-1635620: uncomment when TimeDelta is implemented\n", - "#dti = dti.tz_localize(\"UTC\")" + "dti = dti.tz_localize(\"UTC\")" ] }, { @@ -170,25 +222,55 @@ "execution_count": 6, "id": "d7916dfa-9716-47e4-92a8-c3c852a3d802", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:37.981235Z", - "iopub.status.busy": "2024-08-28T17:27:37.981056Z", - "iopub.status.idle": "2024-08-28T17:27:37.983005Z", - "shell.execute_reply": "2024-08-28T17:27:37.982681Z" - } + "iopub.execute_input": "2024-08-29T18:28:01.831598Z", + "iopub.status.busy": "2024-08-29T18:28:01.831479Z", + "iopub.status.idle": "2024-08-29T18:28:01.857270Z", + "shell.execute_reply": "2024-08-29T18:28:01.856968Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] }, - "outputs": [], + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "Snowpark pandas does not yet support the method DatetimeIndex.tz_convert", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[6], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[38;5;66;03m# TODO SNOW-1635620: uncomment when TimeDelta is implemented\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m \u001b[43mdti\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtz_convert\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mUS/Pacific\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:414\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_method_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 409\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 412\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 413\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 414\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 415\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_method_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_method_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:117\u001b[0m, in \u001b[0;36m_make_not_implemented_decorator..not_implemented_decorator..make_error_raiser..raise_not_implemented_method_error\u001b[0;34m(cls_or_self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 116\u001b[0m non_null_attribute_prefix \u001b[38;5;241m=\u001b[39m attribute_prefix\n\u001b[0;32m--> 117\u001b[0m \u001b[43mErrorMessage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnot_implemented\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 118\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessage\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43m_snowpark_pandas_does_not_yet_support\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m method \u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mnon_null_attribute_prefix\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m.\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mname\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 119\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:163\u001b[0m, in \u001b[0;36mErrorMessage.not_implemented\u001b[0;34m(cls, message)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnot_implemented\u001b[39m(\u001b[38;5;28mcls\u001b[39m, message: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NoReturn: \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 162\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNotImplementedError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(message)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: Snowpark pandas does not yet support the method DatetimeIndex.tz_convert" + ] + } + ], "source": [ "# TODO SNOW-1635620: uncomment when TimeDelta is implemented\n", - "#dti.tz_convert(\"US/Pacific\")" + "dti.tz_convert(\"US/Pacific\")" ] }, { "cell_type": "markdown", "id": "ed3c83b4-e048-4dbb-8d94-25cb0ee62e66", - "metadata": {}, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "source": [ - "### Resampling or converting a time series to a particular frequency" + "##### Resampling or converting a time series to a particular frequency" ] }, { @@ -196,12 +278,17 @@ "execution_count": 7, "id": "5aa8cd79-521b-42ee-a3a6-66be36603bcb", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:37.985074Z", - "iopub.status.busy": "2024-08-28T17:27:37.984931Z", - "iopub.status.idle": "2024-08-28T17:27:39.127895Z", - "shell.execute_reply": "2024-08-28T17:27:39.127293Z" - } + "iopub.execute_input": "2024-08-29T18:28:01.862388Z", + "iopub.status.busy": "2024-08-29T18:28:01.862255Z", + "iopub.status.idle": "2024-08-29T18:28:03.405714Z", + "shell.execute_reply": "2024-08-29T18:28:03.404769Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ { @@ -231,12 +318,17 @@ "execution_count": 8, "id": "796c954c-7f60-441b-b85e-1098824fae4b", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:39.131539Z", - "iopub.status.busy": "2024-08-28T17:27:39.131194Z", - "iopub.status.idle": "2024-08-28T17:27:39.966782Z", - "shell.execute_reply": "2024-08-28T17:27:39.966293Z" - } + "iopub.execute_input": "2024-08-29T18:28:03.413566Z", + "iopub.status.busy": "2024-08-29T18:28:03.413169Z", + "iopub.status.idle": "2024-08-29T18:28:05.207979Z", + "shell.execute_reply": "2024-08-29T18:28:05.207364Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ { @@ -260,9 +352,15 @@ { "cell_type": "markdown", "id": "e873f69d-e8b5-423f-9f0e-b019d37e15df", - "metadata": {}, + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "source": [ - "### Performing date and time arithmetic with absolute or relative time increments" + "##### Performing date and time arithmetic with absolute or relative time increments" ] }, { @@ -270,12 +368,17 @@ "execution_count": 9, "id": "e7272da8-eae8-4e31-8a61-2f442a6780e0", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:39.969410Z", - "iopub.status.busy": "2024-08-28T17:27:39.969229Z", - "iopub.status.idle": "2024-08-28T17:27:39.972019Z", - "shell.execute_reply": "2024-08-28T17:27:39.971689Z" - } + "iopub.execute_input": "2024-08-29T18:28:05.213410Z", + "iopub.status.busy": "2024-08-29T18:28:05.213093Z", + "iopub.status.idle": "2024-08-29T18:28:05.217961Z", + "shell.execute_reply": "2024-08-29T18:28:05.217223Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ { @@ -299,12 +402,17 @@ "execution_count": 10, "id": "b69cb16a-9fc7-46fe-a6f6-a6a1ce635dc5", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:39.974318Z", - "iopub.status.busy": "2024-08-28T17:27:39.974172Z", - "iopub.status.idle": "2024-08-28T17:27:39.976711Z", - "shell.execute_reply": "2024-08-28T17:27:39.976411Z" - } + "iopub.execute_input": "2024-08-29T18:28:05.223422Z", + "iopub.status.busy": "2024-08-29T18:28:05.223032Z", + "iopub.status.idle": "2024-08-29T18:28:05.226712Z", + "shell.execute_reply": "2024-08-29T18:28:05.226255Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ { @@ -319,6 +427,7 @@ } ], "source": [ + "# Add 1 day\n", "saturday = friday + pd.Timedelta(\"1 day\")\n", "saturday.day_name()" ] @@ -328,12 +437,17 @@ "execution_count": 11, "id": "064f4271-9485-497d-b176-b39d4f75248c", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:39.979219Z", - "iopub.status.busy": "2024-08-28T17:27:39.979068Z", - "iopub.status.idle": "2024-08-28T17:27:39.981624Z", - "shell.execute_reply": "2024-08-28T17:27:39.981354Z" - } + "iopub.execute_input": "2024-08-29T18:28:05.230829Z", + "iopub.status.busy": "2024-08-29T18:28:05.230455Z", + "iopub.status.idle": "2024-08-29T18:28:05.234085Z", + "shell.execute_reply": "2024-08-29T18:28:05.233523Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ { @@ -348,6 +462,7 @@ } ], "source": [ + "# Add 1 business day (Friday --> Monday)\n", "monday = friday + pd.offsets.BDay()\n", "monday.day_name()" ] @@ -357,12 +472,17 @@ "execution_count": 12, "id": "86bf9469-b7d3-44fc-900e-cfd67a065842", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:39.983587Z", - "iopub.status.busy": "2024-08-28T17:27:39.983443Z", - "iopub.status.idle": "2024-08-28T17:27:40.913877Z", - "shell.execute_reply": "2024-08-28T17:27:40.913560Z" - } + "iopub.execute_input": "2024-08-29T18:28:05.237113Z", + "iopub.status.busy": "2024-08-29T18:28:05.236922Z", + "iopub.status.idle": "2024-08-29T18:28:07.351062Z", + "shell.execute_reply": "2024-08-29T18:28:07.349924Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ { @@ -388,39 +508,57 @@ }, { "cell_type": "markdown", - "id": "1a42453c-bea7-470a-be57-650f42fea9a5", - "metadata": {}, + "id": "922016ad-e1a7-4d42-a250-05f7ed7894d3", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "source": [ - "### Time Series-related instance methods" + "# Overview" ] }, { "cell_type": "markdown", - "id": "86658f09-80b8-42a5-a108-efc4dddfdb09", - "metadata": {}, + "id": "dae7a72f-417b-471a-b353-5b8cab1b7585", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "source": [ - "### From timestamps to epoch" + "##### For time series data, it’s conventional to represent the time component in the index of a Series or DataFrame so manipulations can be performed with respect to the time element." ] }, { "cell_type": "code", "execution_count": 13, - "id": "0e4e6063-a60f-4a70-adca-2cb9b3b101f8", + "id": "e763faa7-7806-4d2d-8df7-46a7689af07f", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:40.916090Z", - "iopub.status.busy": "2024-08-28T17:27:40.915940Z", - "iopub.status.idle": "2024-08-28T17:27:41.359184Z", - "shell.execute_reply": "2024-08-28T17:27:41.358781Z" - } + "iopub.execute_input": "2024-08-29T18:28:07.356268Z", + "iopub.status.busy": "2024-08-29T18:28:07.355952Z", + "iopub.status.idle": "2024-08-29T18:28:08.558595Z", + "shell.execute_reply": "2024-08-29T18:28:08.557678Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ { "data": { "text/plain": [ - "DatetimeIndex(['2012-10-08 18:15:05', '2012-10-09 18:15:05',\n", - " '2012-10-10 18:15:05', '2012-10-11 18:15:05'],\n", - " dtype='datetime64[ns]', freq=None)" + "2000-01-01 0\n", + "2000-01-02 1\n", + "2000-01-03 2\n", + "Freq: None, dtype: int64" ] }, "execution_count": 13, @@ -429,206 +567,4746 @@ } ], "source": [ - "stamps = pd.date_range(\"2012-10-08 18:15:05\", periods=4, freq=\"D\")\n", - "stamps" + "pd.Series(range(3), index=pd.date_range(\"2000\", freq=\"D\", periods=3))" + ] + }, + { + "cell_type": "markdown", + "id": "61ec1d74-d3d2-4983-8497-2342c7462655", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### However, Series and DataFrame can directly also support the time component as data itself." ] }, { "cell_type": "code", "execution_count": 14, - "id": "f4a38e8b-abcb-49c6-839d-01e4215d7d7a", + "id": "585a116f-14e9-470e-a790-45b0a9de61fe", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:41.361646Z", - "iopub.status.busy": "2024-08-28T17:27:41.361457Z", - "iopub.status.idle": "2024-08-28T17:27:41.363485Z", - "shell.execute_reply": "2024-08-28T17:27:41.363091Z" - } + "iopub.execute_input": "2024-08-29T18:28:08.564450Z", + "iopub.status.busy": "2024-08-29T18:28:08.564128Z", + "iopub.status.idle": "2024-08-29T18:28:09.426000Z", + "shell.execute_reply": "2024-08-29T18:28:09.425027Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "0 2000-01-01\n", + "1 2000-01-02\n", + "2 2000-01-03\n", + "dtype: datetime64[ns]" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# TODO SNOW-1635620: uncomment when TimeDelta is implemented\n", - "# (stamps - pd.Timestamp(\"1970-01-01\")) // pd.Timedelta(\"1s\")" + "pd.Series(pd.date_range(\"2000\", freq=\"D\", periods=3))" ] }, { "cell_type": "markdown", - "id": "9b5b10c8-e72f-4405-bdeb-1bced14c8edf", - "metadata": {}, + "id": "01df1208-2b68-4ccf-b0c3-461ddc08d8b1", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, "source": [ - "### DateOffset objects" + "##### Series and DataFrame have extended data type support and functionality for datetime, timedelta and Period data when passed into those constructors. DateOffset data however will be stored as object data." ] }, { "cell_type": "code", "execution_count": 15, - "id": "1febbd6a-1b57-4e6a-a48a-3eac565ad61d", + "id": "6710ed2a-053e-459c-8752-acdf07d5e362", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:09.431015Z", + "iopub.status.busy": "2024-08-29T18:28:09.430644Z", + "iopub.status.idle": "2024-08-29T18:28:09.978778Z", + "shell.execute_reply": "2024-08-29T18:28:09.978434Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "pandas type period[M] is not implemented", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/type_utils.py:256\u001b[0m, in \u001b[0;36mTypeMapper.to_snowflake\u001b[0;34m(cls, p)\u001b[0m\n\u001b[1;32m 255\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 256\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mPANDAS_TO_SNOWFLAKE_MAP\u001b[49m\u001b[43m[\u001b[49m\u001b[43mp\u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 257\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m:\n", + "\u001b[0;31mKeyError\u001b[0m: period[M]", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[15], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSeries\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mperiod_range\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m1/1/2011\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mM\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mperiods\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m3\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/series.py:156\u001b[0m, in \u001b[0;36mSeries.__init__\u001b[0;34m(self, data, index, dtype, name, copy, fastpath, query_compiler)\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28misinstance\u001b[39m(data, (pandas\u001b[38;5;241m.\u001b[39mSeries, pandas\u001b[38;5;241m.\u001b[39mIndex, pd\u001b[38;5;241m.\u001b[39mIndex))\n\u001b[1;32m 152\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m data\u001b[38;5;241m.\u001b[39mname \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 153\u001b[0m ):\n\u001b[1;32m 154\u001b[0m name \u001b[38;5;241m=\u001b[39m data\u001b[38;5;241m.\u001b[39mname\n\u001b[0;32m--> 156\u001b[0m query_compiler \u001b[38;5;241m=\u001b[39m \u001b[43mfrom_pandas\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 157\u001b[0m \u001b[43m \u001b[49m\u001b[43mpandas\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mDataFrame\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 158\u001b[0m \u001b[43m \u001b[49m\u001b[43mpandas\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSeries\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 159\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtry_convert_index_to_native\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 160\u001b[0m \u001b[43m \u001b[49m\u001b[43mindex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtry_convert_index_to_native\u001b[49m\u001b[43m(\u001b[49m\u001b[43mindex\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 161\u001b[0m \u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 162\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 163\u001b[0m \u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 164\u001b[0m \u001b[43m \u001b[49m\u001b[43mfastpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfastpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 165\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 166\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 167\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39m_query_compiler\n\u001b[1;32m 168\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_query_compiler \u001b[38;5;241m=\u001b[39m query_compiler\u001b[38;5;241m.\u001b[39mcolumnarize()\n\u001b[1;32m 169\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/utils.py:104\u001b[0m, in \u001b[0;36mfrom_pandas\u001b[0;34m(df)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[38;5;66;03m# from modin.core.execution.dispatching.factories.dispatcher import FactoryDispatcher\u001b[39;00m\n\u001b[1;32m 102\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msnowflake\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msnowpark\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmodin\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpandas\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m DataFrame\n\u001b[0;32m--> 104\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m DataFrame(query_compiler\u001b[38;5;241m=\u001b[39m\u001b[43mFactoryDispatcher\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m)\u001b[49m)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/core/execution/dispatching/factories/dispatcher.py:132\u001b[0m, in \u001b[0;36mFactoryDispatcher.from_pandas\u001b[0;34m(cls, df)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 130\u001b[0m \u001b[38;5;129m@_inherit_docstrings\u001b[39m(factories\u001b[38;5;241m.\u001b[39mBaseFactory\u001b[38;5;241m.\u001b[39m_from_pandas)\n\u001b[1;32m 131\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfrom_pandas\u001b[39m(\u001b[38;5;28mcls\u001b[39m, df):\n\u001b[0;32m--> 132\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_factory\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_from_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/core/execution/dispatching/factories/factories.py:172\u001b[0m, in \u001b[0;36mBaseFactory._from_pandas\u001b[0;34m(cls, df)\u001b[0m\n\u001b[1;32m 164\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 165\u001b[0m \u001b[38;5;129m@doc\u001b[39m(\n\u001b[1;32m 166\u001b[0m _doc_io_method_template,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 170\u001b[0m )\n\u001b[1;32m 171\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_from_pandas\u001b[39m(\u001b[38;5;28mcls\u001b[39m, df):\n\u001b[0;32m--> 172\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mio_cls\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/io/snow_io.py:177\u001b[0m, in \u001b[0;36mPandasOnSnowflakeIO.from_pandas\u001b[0;34m(cls, df)\u001b[0m\n\u001b[1;32m 171\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 172\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfrom_pandas\u001b[39m(\u001b[38;5;28mcls\u001b[39m, df: pandas\u001b[38;5;241m.\u001b[39mDataFrame):\n\u001b[1;32m 173\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"invoke construction from pandas DataFrame (io backup methods), df is a pandas.DataFrame living in main-memory\u001b[39;00m\n\u001b[1;32m 174\u001b[0m \u001b[38;5;124;03m Args:\u001b[39;00m\n\u001b[1;32m 175\u001b[0m \u001b[38;5;124;03m df: An existing (native) pandas DataFrame\u001b[39;00m\n\u001b[1;32m 176\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 177\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mquery_compiler_cls\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpandas\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mDataFrame\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/modin/logging/logger_decorator.py:125\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;124;03mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[1;32m 112\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124;03mAny\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m LogMode\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 127\u001b[0m logger \u001b[38;5;241m=\u001b[39m get_logger()\n\u001b[1;32m 128\u001b[0m logger\u001b[38;5;241m.\u001b[39mlog(log_level, start_line)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/compiler/snowflake_query_compiler.py:584\u001b[0m, in \u001b[0;36mSnowflakeQueryCompiler.from_pandas\u001b[0;34m(cls, df, *args, **kwargs)\u001b[0m\n\u001b[1;32m 579\u001b[0m current_df_data_column_snowflake_quoted_identifiers\u001b[38;5;241m.\u001b[39mappend(\n\u001b[1;32m 580\u001b[0m row_position_snowflake_quoted_identifier\n\u001b[1;32m 581\u001b[0m )\n\u001b[1;32m 583\u001b[0m \u001b[38;5;66;03m# create snowpark df\u001b[39;00m\n\u001b[0;32m--> 584\u001b[0m snowpark_pandas_types, snowpark_types \u001b[38;5;241m=\u001b[39m \u001b[43minfer_snowpark_types_from_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 585\u001b[0m ordered_dataframe \u001b[38;5;241m=\u001b[39m create_ordered_dataframe_from_pandas(\n\u001b[1;32m 586\u001b[0m df,\n\u001b[1;32m 587\u001b[0m snowflake_quoted_identifiers\u001b[38;5;241m=\u001b[39mcurrent_df_data_column_snowflake_quoted_identifiers,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 592\u001b[0m row_position_snowflake_quoted_identifier\u001b[38;5;241m=\u001b[39mrow_position_snowflake_quoted_identifier,\n\u001b[1;32m 593\u001b[0m )\n\u001b[1;32m 595\u001b[0m \u001b[38;5;66;03m# construct the internal frame for the dataframe\u001b[39;00m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/utils.py:1051\u001b[0m, in \u001b[0;36minfer_snowpark_types_from_pandas\u001b[0;34m(df)\u001b[0m\n\u001b[1;32m 1049\u001b[0m snowpark_types \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 1050\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m _, column \u001b[38;5;129;01min\u001b[39;00m df\u001b[38;5;241m.\u001b[39mitems():\n\u001b[0;32m-> 1051\u001b[0m snowflake_type \u001b[38;5;241m=\u001b[39m \u001b[43minfer_series_type\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcolumn\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1052\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(snowflake_type, SnowparkPandasType):\n\u001b[1;32m 1053\u001b[0m snowpark_types\u001b[38;5;241m.\u001b[39mappend(snowflake_type\u001b[38;5;241m.\u001b[39msnowpark_type)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/type_utils.py:199\u001b[0m, in \u001b[0;36minfer_series_type\u001b[0;34m(series)\u001b[0m\n\u001b[1;32m 197\u001b[0m snowflake_type \u001b[38;5;241m=\u001b[39m VariantType()\n\u001b[1;32m 198\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 199\u001b[0m snowflake_type \u001b[38;5;241m=\u001b[39m \u001b[43mTypeMapper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_snowflake\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata_type\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m snowflake_type\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/type_utils.py:258\u001b[0m, in \u001b[0;36mTypeMapper.to_snowflake\u001b[0;34m(cls, p)\u001b[0m\n\u001b[1;32m 256\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m PANDAS_TO_SNOWFLAKE_MAP[p]\n\u001b[1;32m 257\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m:\n\u001b[0;32m--> 258\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpandas type \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mp\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m is not implemented\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: pandas type period[M] is not implemented" + ] + } + ], + "source": [ + "pd.Series(pd.period_range(\"1/1/2011\", freq=\"M\", periods=3))" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "2ce1f555-cb1d-46e6-a0ee-831a90dbd594", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:41.365775Z", - "iopub.status.busy": "2024-08-28T17:27:41.365599Z", - "iopub.status.idle": "2024-08-28T17:27:41.413954Z", - "shell.execute_reply": "2024-08-28T17:27:41.413683Z" + "iopub.execute_input": "2024-08-29T18:28:09.983174Z", + "iopub.status.busy": "2024-08-29T18:28:09.983052Z", + "iopub.status.idle": "2024-08-29T18:28:10.216551Z", + "shell.execute_reply": "2024-08-29T18:28:10.216201Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "TypeError", + "evalue": "Object of type DateOffset is not JSON serializable", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[16], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSeries\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mDateOffset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mDateOffset\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m2\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/series.py:156\u001b[0m, in \u001b[0;36mSeries.__init__\u001b[0;34m(self, data, index, dtype, name, copy, fastpath, query_compiler)\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28misinstance\u001b[39m(data, (pandas\u001b[38;5;241m.\u001b[39mSeries, pandas\u001b[38;5;241m.\u001b[39mIndex, pd\u001b[38;5;241m.\u001b[39mIndex))\n\u001b[1;32m 152\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m data\u001b[38;5;241m.\u001b[39mname \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 153\u001b[0m ):\n\u001b[1;32m 154\u001b[0m name \u001b[38;5;241m=\u001b[39m data\u001b[38;5;241m.\u001b[39mname\n\u001b[0;32m--> 156\u001b[0m query_compiler \u001b[38;5;241m=\u001b[39m \u001b[43mfrom_pandas\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 157\u001b[0m \u001b[43m \u001b[49m\u001b[43mpandas\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mDataFrame\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 158\u001b[0m \u001b[43m \u001b[49m\u001b[43mpandas\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSeries\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 159\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtry_convert_index_to_native\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 160\u001b[0m \u001b[43m \u001b[49m\u001b[43mindex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtry_convert_index_to_native\u001b[49m\u001b[43m(\u001b[49m\u001b[43mindex\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 161\u001b[0m \u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 162\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 163\u001b[0m \u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 164\u001b[0m \u001b[43m \u001b[49m\u001b[43mfastpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfastpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 165\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 166\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 167\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39m_query_compiler\n\u001b[1;32m 168\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_query_compiler \u001b[38;5;241m=\u001b[39m query_compiler\u001b[38;5;241m.\u001b[39mcolumnarize()\n\u001b[1;32m 169\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/utils.py:104\u001b[0m, in \u001b[0;36mfrom_pandas\u001b[0;34m(df)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[38;5;66;03m# from modin.core.execution.dispatching.factories.dispatcher import FactoryDispatcher\u001b[39;00m\n\u001b[1;32m 102\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msnowflake\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msnowpark\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmodin\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpandas\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m DataFrame\n\u001b[0;32m--> 104\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m DataFrame(query_compiler\u001b[38;5;241m=\u001b[39m\u001b[43mFactoryDispatcher\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m)\u001b[49m)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/core/execution/dispatching/factories/dispatcher.py:132\u001b[0m, in \u001b[0;36mFactoryDispatcher.from_pandas\u001b[0;34m(cls, df)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 130\u001b[0m \u001b[38;5;129m@_inherit_docstrings\u001b[39m(factories\u001b[38;5;241m.\u001b[39mBaseFactory\u001b[38;5;241m.\u001b[39m_from_pandas)\n\u001b[1;32m 131\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfrom_pandas\u001b[39m(\u001b[38;5;28mcls\u001b[39m, df):\n\u001b[0;32m--> 132\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_factory\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_from_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/core/execution/dispatching/factories/factories.py:172\u001b[0m, in \u001b[0;36mBaseFactory._from_pandas\u001b[0;34m(cls, df)\u001b[0m\n\u001b[1;32m 164\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 165\u001b[0m \u001b[38;5;129m@doc\u001b[39m(\n\u001b[1;32m 166\u001b[0m _doc_io_method_template,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 170\u001b[0m )\n\u001b[1;32m 171\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_from_pandas\u001b[39m(\u001b[38;5;28mcls\u001b[39m, df):\n\u001b[0;32m--> 172\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mio_cls\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/io/snow_io.py:177\u001b[0m, in \u001b[0;36mPandasOnSnowflakeIO.from_pandas\u001b[0;34m(cls, df)\u001b[0m\n\u001b[1;32m 171\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 172\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfrom_pandas\u001b[39m(\u001b[38;5;28mcls\u001b[39m, df: pandas\u001b[38;5;241m.\u001b[39mDataFrame):\n\u001b[1;32m 173\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"invoke construction from pandas DataFrame (io backup methods), df is a pandas.DataFrame living in main-memory\u001b[39;00m\n\u001b[1;32m 174\u001b[0m \u001b[38;5;124;03m Args:\u001b[39;00m\n\u001b[1;32m 175\u001b[0m \u001b[38;5;124;03m df: An existing (native) pandas DataFrame\u001b[39;00m\n\u001b[1;32m 176\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 177\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mquery_compiler_cls\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpandas\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mDataFrame\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/modin/logging/logger_decorator.py:125\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;124;03mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[1;32m 112\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124;03mAny\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m LogMode\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 127\u001b[0m logger \u001b[38;5;241m=\u001b[39m get_logger()\n\u001b[1;32m 128\u001b[0m logger\u001b[38;5;241m.\u001b[39mlog(log_level, start_line)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/compiler/snowflake_query_compiler.py:585\u001b[0m, in \u001b[0;36mSnowflakeQueryCompiler.from_pandas\u001b[0;34m(cls, df, *args, **kwargs)\u001b[0m\n\u001b[1;32m 583\u001b[0m \u001b[38;5;66;03m# create snowpark df\u001b[39;00m\n\u001b[1;32m 584\u001b[0m snowpark_pandas_types, snowpark_types \u001b[38;5;241m=\u001b[39m infer_snowpark_types_from_pandas(df)\n\u001b[0;32m--> 585\u001b[0m ordered_dataframe \u001b[38;5;241m=\u001b[39m \u001b[43mcreate_ordered_dataframe_from_pandas\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 586\u001b[0m \u001b[43m \u001b[49m\u001b[43mdf\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 587\u001b[0m \u001b[43m \u001b[49m\u001b[43msnowflake_quoted_identifiers\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcurrent_df_data_column_snowflake_quoted_identifiers\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 588\u001b[0m \u001b[43m \u001b[49m\u001b[43msnowpark_types\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msnowpark_types\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 589\u001b[0m \u001b[43m \u001b[49m\u001b[43mordering_columns\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m[\u001b[49m\n\u001b[1;32m 590\u001b[0m \u001b[43m \u001b[49m\u001b[43mOrderingColumn\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrow_position_snowflake_quoted_identifier\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 591\u001b[0m \u001b[43m \u001b[49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 592\u001b[0m \u001b[43m \u001b[49m\u001b[43mrow_position_snowflake_quoted_identifier\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mrow_position_snowflake_quoted_identifier\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 593\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 595\u001b[0m \u001b[38;5;66;03m# construct the internal frame for the dataframe\u001b[39;00m\n\u001b[1;32m 596\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mcls\u001b[39m(\n\u001b[1;32m 597\u001b[0m InternalFrame\u001b[38;5;241m.\u001b[39mcreate(\n\u001b[1;32m 598\u001b[0m ordered_dataframe\u001b[38;5;241m=\u001b[39mordered_dataframe,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 617\u001b[0m )\n\u001b[1;32m 618\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/utils.py:1114\u001b[0m, in \u001b[0;36mcreate_ordered_dataframe_from_pandas\u001b[0;34m(df, snowflake_quoted_identifiers, snowpark_types, ordering_columns, row_position_snowflake_quoted_identifier)\u001b[0m\n\u001b[1;32m 1103\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m y \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;28mlen\u001b[39m(data[x])):\n\u001b[1;32m 1104\u001b[0m data[x][y] \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 1105\u001b[0m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 1106\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m isna_data[x][y]\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 1111\u001b[0m )\n\u001b[1;32m 1112\u001b[0m )\n\u001b[0;32m-> 1114\u001b[0m snowpark_df \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43msession\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcreate_dataframe\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1115\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1116\u001b[0m \u001b[43m \u001b[49m\u001b[43mschema\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mStructType\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1117\u001b[0m \u001b[43m \u001b[49m\u001b[43m[\u001b[49m\n\u001b[1;32m 1118\u001b[0m \u001b[43m \u001b[49m\u001b[43mStructField\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcolumn_identifier\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mid\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdatatype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43meach_datatype\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1119\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mid\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43meach_datatype\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mzip\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1120\u001b[0m \u001b[43m \u001b[49m\u001b[43msnowflake_quoted_identifiers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msnowpark_types\u001b[49m\n\u001b[1;32m 1121\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1122\u001b[0m \u001b[43m \u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 1123\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1124\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m OrderedDataFrame(\n\u001b[1;32m 1126\u001b[0m DataFrameReference(snowpark_df, snowflake_quoted_identifiers),\n\u001b[1;32m 1127\u001b[0m projected_column_snowflake_quoted_identifiers\u001b[38;5;241m=\u001b[39msnowflake_quoted_identifiers,\n\u001b[1;32m 1128\u001b[0m ordering_columns\u001b[38;5;241m=\u001b[39mordering_columns,\n\u001b[1;32m 1129\u001b[0m row_position_snowflake_quoted_identifier\u001b[38;5;241m=\u001b[39mrow_position_snowflake_quoted_identifier,\n\u001b[1;32m 1130\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/session.py:2807\u001b[0m, in \u001b[0;36mSession.create_dataframe\u001b[0;34m(self, data, schema)\u001b[0m\n\u001b[1;32m 2805\u001b[0m converted_row\u001b[38;5;241m.\u001b[39mappend(json\u001b[38;5;241m.\u001b[39mdumps(value, \u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m=\u001b[39mPythonObjJSONEncoder))\n\u001b[1;32m 2806\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(data_type, VariantType):\n\u001b[0;32m-> 2807\u001b[0m converted_row\u001b[38;5;241m.\u001b[39mappend(\u001b[43mjson\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdumps\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalue\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mPythonObjJSONEncoder\u001b[49m\u001b[43m)\u001b[49m)\n\u001b[1;32m 2808\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(data_type, GeographyType):\n\u001b[1;32m 2809\u001b[0m converted_row\u001b[38;5;241m.\u001b[39mappend(value)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/json/__init__.py:234\u001b[0m, in \u001b[0;36mdumps\u001b[0;34m(obj, skipkeys, ensure_ascii, check_circular, allow_nan, cls, indent, separators, default, sort_keys, **kw)\u001b[0m\n\u001b[1;32m 232\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mcls\u001b[39m \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 233\u001b[0m \u001b[38;5;28mcls\u001b[39m \u001b[38;5;241m=\u001b[39m JSONEncoder\n\u001b[0;32m--> 234\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m 235\u001b[0m \u001b[43m \u001b[49m\u001b[43mskipkeys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mskipkeys\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mensure_ascii\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mensure_ascii\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 236\u001b[0m \u001b[43m \u001b[49m\u001b[43mcheck_circular\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcheck_circular\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mallow_nan\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mallow_nan\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindent\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mindent\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 237\u001b[0m \u001b[43m \u001b[49m\u001b[43mseparators\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mseparators\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdefault\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdefault\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msort_keys\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43msort_keys\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 238\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkw\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencode\u001b[49m\u001b[43m(\u001b[49m\u001b[43mobj\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/json/encoder.py:199\u001b[0m, in \u001b[0;36mJSONEncoder.encode\u001b[0;34m(self, o)\u001b[0m\n\u001b[1;32m 195\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m encode_basestring(o)\n\u001b[1;32m 196\u001b[0m \u001b[38;5;66;03m# This doesn't pass the iterator directly to ''.join() because the\u001b[39;00m\n\u001b[1;32m 197\u001b[0m \u001b[38;5;66;03m# exceptions aren't as detailed. The list call should be roughly\u001b[39;00m\n\u001b[1;32m 198\u001b[0m \u001b[38;5;66;03m# equivalent to the PySequence_Fast that ''.join() would do.\u001b[39;00m\n\u001b[0;32m--> 199\u001b[0m chunks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43miterencode\u001b[49m\u001b[43m(\u001b[49m\u001b[43mo\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m_one_shot\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 200\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(chunks, (\u001b[38;5;28mlist\u001b[39m, \u001b[38;5;28mtuple\u001b[39m)):\n\u001b[1;32m 201\u001b[0m chunks \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mlist\u001b[39m(chunks)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/json/encoder.py:257\u001b[0m, in \u001b[0;36mJSONEncoder.iterencode\u001b[0;34m(self, o, _one_shot)\u001b[0m\n\u001b[1;32m 252\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 253\u001b[0m _iterencode \u001b[38;5;241m=\u001b[39m _make_iterencode(\n\u001b[1;32m 254\u001b[0m markers, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdefault, _encoder, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mindent, floatstr,\n\u001b[1;32m 255\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mkey_separator, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mitem_separator, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msort_keys,\n\u001b[1;32m 256\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mskipkeys, _one_shot)\n\u001b[0;32m--> 257\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_iterencode\u001b[49m\u001b[43m(\u001b[49m\u001b[43mo\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/_internal/utils.py:651\u001b[0m, in \u001b[0;36mPythonObjJSONEncoder.default\u001b[0;34m(self, value)\u001b[0m\n\u001b[1;32m 649\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m value\u001b[38;5;241m.\u001b[39mtolist()\n\u001b[1;32m 650\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 651\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdefault\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalue\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/json/encoder.py:179\u001b[0m, in \u001b[0;36mJSONEncoder.default\u001b[0;34m(self, o)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdefault\u001b[39m(\u001b[38;5;28mself\u001b[39m, o):\n\u001b[1;32m 161\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Implement this method in a subclass such that it returns\u001b[39;00m\n\u001b[1;32m 162\u001b[0m \u001b[38;5;124;03m a serializable object for ``o``, or calls the base implementation\u001b[39;00m\n\u001b[1;32m 163\u001b[0m \u001b[38;5;124;03m (to raise a ``TypeError``).\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 177\u001b[0m \n\u001b[1;32m 178\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 179\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mTypeError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mObject of type \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mo\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__class__\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m 180\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mis not JSON serializable\u001b[39m\u001b[38;5;124m'\u001b[39m)\n", + "\u001b[0;31mTypeError\u001b[0m: Object of type DateOffset is not JSON serializable" + ] } + ], + "source": [ + "pd.Series([pd.DateOffset(1), pd.DateOffset(2)])" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "a6befac8-06ca-45c2-ade8-03736ac7f7ed", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:10.223051Z", + "iopub.status.busy": "2024-08-29T18:28:10.222930Z", + "iopub.status.idle": "2024-08-29T18:28:11.095028Z", + "shell.execute_reply": "2024-08-29T18:28:11.093854Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ { "data": { "text/plain": [ - "Timestamp('2016-10-30 23:00:00+0200', tz='Europe/Helsinki')" + "0 2011-01-31\n", + "1 2011-02-28\n", + "2 2011-03-31\n", + "dtype: datetime64[ns]" ] }, - "execution_count": 15, + "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "ts = pd.Timestamp(\"2016-10-30 00:00:00\", tz=\"Europe/Helsinki\")\n", - "\n", - "ts + pd.Timedelta(days=1)" + "pd.Series(pd.date_range(\"1/1/2011\", freq=\"ME\", periods=3))" + ] + }, + { + "cell_type": "markdown", + "id": "a433d9b6-cfa8-4a1a-bc65-7253a0ab1fc1", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### Lastly, pandas represents null date times, time deltas, and time spans as NaT which is useful for representing missing or null date like values and behaves similar as np.nan does for float data." ] }, { "cell_type": "code", - "execution_count": 16, - "id": "b8d03fb0-826f-4698-a6d0-f2b63f7d38dc", + "execution_count": 18, + "id": "cf9b85c2-c342-492a-8bef-d8dad541c8d2", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:41.415634Z", - "iopub.status.busy": "2024-08-28T17:27:41.415523Z", - "iopub.status.idle": "2024-08-28T17:27:41.417793Z", - "shell.execute_reply": "2024-08-28T17:27:41.417561Z" - } + "iopub.execute_input": "2024-08-29T18:28:11.100458Z", + "iopub.status.busy": "2024-08-29T18:28:11.099875Z", + "iopub.status.idle": "2024-08-29T18:28:11.105003Z", + "shell.execute_reply": "2024-08-29T18:28:11.104453Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ { "data": { "text/plain": [ - "Timestamp('2016-10-31 00:00:00+0200', tz='Europe/Helsinki')" + "NaT" ] }, - "execution_count": 16, + "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "ts + pd.DateOffset(days=1)" + "pd.Timestamp(pd.NaT)" ] }, { - "cell_type": "markdown", - "id": "00d1f5cf-c073-4c60-949b-404953b80000", - "metadata": {}, + "cell_type": "code", + "execution_count": 19, + "id": "28c9907e-eaef-44c1-8a96-2e4a8b0451dc", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:11.109326Z", + "iopub.status.busy": "2024-08-29T18:28:11.108901Z", + "iopub.status.idle": "2024-08-29T18:28:11.112581Z", + "shell.execute_reply": "2024-08-29T18:28:11.112067Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "NaT" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "### Timestamp Binary Operations" + "pd.Timedelta(pd.NaT)" ] }, { "cell_type": "code", - "execution_count": 17, - "id": "dd818a8d-97c1-46f3-b29f-499ba92f22ae", + "execution_count": 20, + "id": "7ba5293a-b234-4a4a-a276-f5b9ebc6512c", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:41.419736Z", - "iopub.status.busy": "2024-08-28T17:27:41.419620Z", - "iopub.status.idle": "2024-08-28T17:27:42.097520Z", - "shell.execute_reply": "2024-08-28T17:27:42.097100Z" - } + "iopub.execute_input": "2024-08-29T18:28:11.116492Z", + "iopub.status.busy": "2024-08-29T18:28:11.116234Z", + "iopub.status.idle": "2024-08-29T18:28:11.119617Z", + "shell.execute_reply": "2024-08-29T18:28:11.119049Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ { "data": { "text/plain": [ - "Timedelta('396 days 03:00:00')" + "NaT" ] }, - "execution_count": 17, + "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "pd.to_datetime('2018-10-26 12:00:00') - pd.to_datetime('2017-09-25 09:00:00')" + "pd.Period(pd.NaT)" ] }, { "cell_type": "code", - "execution_count": 18, - "id": "7c9a87d2-7883-46a6-8433-dfa5900ca9b0", + "execution_count": 21, + "id": "41ff9cef-5957-45ac-b9d6-994ffb813cf3", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:42.099835Z", - "iopub.status.busy": "2024-08-28T17:27:42.099657Z", - "iopub.status.idle": "2024-08-28T17:27:42.102502Z", - "shell.execute_reply": "2024-08-28T17:27:42.102144Z" - } + "iopub.execute_input": "2024-08-29T18:28:11.122971Z", + "iopub.status.busy": "2024-08-29T18:28:11.122632Z", + "iopub.status.idle": "2024-08-29T18:28:11.125677Z", + "shell.execute_reply": "2024-08-29T18:28:11.125340Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ { "data": { "text/plain": [ - "Timedelta('6 days 07:00:00')" + "False" ] }, - "execution_count": 18, + "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "pd.Timestamp(\"2014-08-01 10:00\") - pd.Timestamp(\"2014-07-26 03:00\")" + "# Equality acts as np.nan would\n", + "pd.NaT == pd.NaT" + ] + }, + { + "cell_type": "markdown", + "id": "55cdacb3-46ca-465e-869a-f8887852e401", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# Timestamps vs. time spans" + ] + }, + { + "cell_type": "markdown", + "id": "52c2704d-375b-42ff-9b9c-e48883d3b43f", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### Timestamp and Period can serve as an index. Lists of Timestamp and Period are automatically coerced to DatetimeIndex and PeriodIndex respectively." ] }, { "cell_type": "code", - "execution_count": 19, - "id": "e78454b1-0d4c-42bc-a127-b21a4a7f09cf", + "execution_count": 22, + "id": "2b248408-76d5-4d95-9dc5-164ba9532309", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:42.104922Z", - "iopub.status.busy": "2024-08-28T17:27:42.104781Z", - "iopub.status.idle": "2024-08-28T17:27:42.107600Z", - "shell.execute_reply": "2024-08-28T17:27:42.107293Z" - } + "iopub.execute_input": "2024-08-29T18:28:11.128406Z", + "iopub.status.busy": "2024-08-29T18:28:11.128276Z", + "iopub.status.idle": "2024-08-29T18:28:11.379011Z", + "shell.execute_reply": "2024-08-29T18:28:11.378010Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ { "data": { "text/plain": [ - "Timedelta('682 days 03:00:00')" + "snowflake.snowpark.modin.plugin.extensions.datetime_index.DatetimeIndex" ] }, - "execution_count": 19, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "pd.Timestamp(year=2017, month=1, day=1, hour=12) - pd.Timestamp(year=2015, month=2, day=19, hour=9)" + "dates = [\n", + " pd.Timestamp(\"2012-05-01\"),\n", + " pd.Timestamp(\"2012-05-02\"),\n", + " pd.Timestamp(\"2012-05-03\"),\n", + "]\n", + "\n", + "\n", + "ts = pd.Series(np.random.randn(3), dates)\n", + "\n", + "type(ts.index)" ] }, { "cell_type": "code", - "execution_count": 20, - "id": "2534d141-1862-4901-ba70-7ed73ab9abdd", + "execution_count": 23, + "id": "c7cca402-6c5f-475a-aab7-77957f656690", "metadata": { + "editable": true, "execution": { - "iopub.execute_input": "2024-08-28T17:27:42.109761Z", - "iopub.status.busy": "2024-08-28T17:27:42.109628Z", - "iopub.status.idle": "2024-08-28T17:27:42.763799Z", - "shell.execute_reply": "2024-08-28T17:27:42.763158Z" - } + "iopub.execute_input": "2024-08-29T18:28:11.389849Z", + "iopub.status.busy": "2024-08-29T18:28:11.389473Z", + "iopub.status.idle": "2024-08-29T18:28:11.715214Z", + "shell.execute_reply": "2024-08-29T18:28:11.714074Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] }, "outputs": [ { "data": { "text/plain": [ - "Timedelta('-31 days +03:09:02')" + "DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)" ] }, - "execution_count": 20, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts.index" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "b88e7085-4cfd-456d-8422-f440ba02ed27", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:11.725178Z", + "iopub.status.busy": "2024-08-29T18:28:11.724666Z", + "iopub.status.idle": "2024-08-29T18:28:12.066895Z", + "shell.execute_reply": "2024-08-29T18:28:12.066196Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2012-05-01 -0.314483\n", + "2012-05-02 0.727649\n", + "2012-05-03 -0.215189\n", + "Freq: None, dtype: float64" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "id": "126e9c1c-0006-44a7-a05d-a8ccb0aca029", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:12.072944Z", + "iopub.status.busy": "2024-08-29T18:28:12.072424Z", + "iopub.status.idle": "2024-08-29T18:28:12.139568Z", + "shell.execute_reply": "2024-08-29T18:28:12.139239Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "pandas type period[M] is not implemented", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/type_utils.py:256\u001b[0m, in \u001b[0;36mTypeMapper.to_snowflake\u001b[0;34m(cls, p)\u001b[0m\n\u001b[1;32m 255\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 256\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mPANDAS_TO_SNOWFLAKE_MAP\u001b[49m\u001b[43m[\u001b[49m\u001b[43mp\u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 257\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m:\n", + "\u001b[0;31mKeyError\u001b[0m: period[M]", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[25], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m periods \u001b[38;5;241m=\u001b[39m [pd\u001b[38;5;241m.\u001b[39mPeriod(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m2012-01\u001b[39m\u001b[38;5;124m\"\u001b[39m), pd\u001b[38;5;241m.\u001b[39mPeriod(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m2012-02\u001b[39m\u001b[38;5;124m\"\u001b[39m), pd\u001b[38;5;241m.\u001b[39mPeriod(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m2012-03\u001b[39m\u001b[38;5;124m\"\u001b[39m)]\n\u001b[0;32m----> 3\u001b[0m ts \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSeries\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnp\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrandom\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrandn\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m3\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mperiods\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;28mtype\u001b[39m(ts\u001b[38;5;241m.\u001b[39mindex)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/series.py:156\u001b[0m, in \u001b[0;36mSeries.__init__\u001b[0;34m(self, data, index, dtype, name, copy, fastpath, query_compiler)\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28misinstance\u001b[39m(data, (pandas\u001b[38;5;241m.\u001b[39mSeries, pandas\u001b[38;5;241m.\u001b[39mIndex, pd\u001b[38;5;241m.\u001b[39mIndex))\n\u001b[1;32m 152\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m data\u001b[38;5;241m.\u001b[39mname \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[1;32m 153\u001b[0m ):\n\u001b[1;32m 154\u001b[0m name \u001b[38;5;241m=\u001b[39m data\u001b[38;5;241m.\u001b[39mname\n\u001b[0;32m--> 156\u001b[0m query_compiler \u001b[38;5;241m=\u001b[39m \u001b[43mfrom_pandas\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 157\u001b[0m \u001b[43m \u001b[49m\u001b[43mpandas\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mDataFrame\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 158\u001b[0m \u001b[43m \u001b[49m\u001b[43mpandas\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mSeries\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 159\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtry_convert_index_to_native\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 160\u001b[0m \u001b[43m \u001b[49m\u001b[43mindex\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtry_convert_index_to_native\u001b[49m\u001b[43m(\u001b[49m\u001b[43mindex\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 161\u001b[0m \u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 162\u001b[0m \u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 163\u001b[0m \u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 164\u001b[0m \u001b[43m \u001b[49m\u001b[43mfastpath\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfastpath\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 165\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 166\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 167\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39m_query_compiler\n\u001b[1;32m 168\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_query_compiler \u001b[38;5;241m=\u001b[39m query_compiler\u001b[38;5;241m.\u001b[39mcolumnarize()\n\u001b[1;32m 169\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/utils.py:104\u001b[0m, in \u001b[0;36mfrom_pandas\u001b[0;34m(df)\u001b[0m\n\u001b[1;32m 101\u001b[0m \u001b[38;5;66;03m# from modin.core.execution.dispatching.factories.dispatcher import FactoryDispatcher\u001b[39;00m\n\u001b[1;32m 102\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01msnowflake\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01msnowpark\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mmodin\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mpandas\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m DataFrame\n\u001b[0;32m--> 104\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m DataFrame(query_compiler\u001b[38;5;241m=\u001b[39m\u001b[43mFactoryDispatcher\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m)\u001b[49m)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/core/execution/dispatching/factories/dispatcher.py:132\u001b[0m, in \u001b[0;36mFactoryDispatcher.from_pandas\u001b[0;34m(cls, df)\u001b[0m\n\u001b[1;32m 129\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 130\u001b[0m \u001b[38;5;129m@_inherit_docstrings\u001b[39m(factories\u001b[38;5;241m.\u001b[39mBaseFactory\u001b[38;5;241m.\u001b[39m_from_pandas)\n\u001b[1;32m 131\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfrom_pandas\u001b[39m(\u001b[38;5;28mcls\u001b[39m, df):\n\u001b[0;32m--> 132\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_factory\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_from_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/core/execution/dispatching/factories/factories.py:172\u001b[0m, in \u001b[0;36mBaseFactory._from_pandas\u001b[0;34m(cls, df)\u001b[0m\n\u001b[1;32m 164\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 165\u001b[0m \u001b[38;5;129m@doc\u001b[39m(\n\u001b[1;32m 166\u001b[0m _doc_io_method_template,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 170\u001b[0m )\n\u001b[1;32m 171\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_from_pandas\u001b[39m(\u001b[38;5;28mcls\u001b[39m, df):\n\u001b[0;32m--> 172\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mio_cls\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/io/snow_io.py:177\u001b[0m, in \u001b[0;36mPandasOnSnowflakeIO.from_pandas\u001b[0;34m(cls, df)\u001b[0m\n\u001b[1;32m 171\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 172\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mfrom_pandas\u001b[39m(\u001b[38;5;28mcls\u001b[39m, df: pandas\u001b[38;5;241m.\u001b[39mDataFrame):\n\u001b[1;32m 173\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"invoke construction from pandas DataFrame (io backup methods), df is a pandas.DataFrame living in main-memory\u001b[39;00m\n\u001b[1;32m 174\u001b[0m \u001b[38;5;124;03m Args:\u001b[39;00m\n\u001b[1;32m 175\u001b[0m \u001b[38;5;124;03m df: An existing (native) pandas DataFrame\u001b[39;00m\n\u001b[1;32m 176\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 177\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mquery_compiler_cls\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mpandas\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mDataFrame\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/modin/logging/logger_decorator.py:125\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;124;03mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[1;32m 112\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124;03mAny\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m LogMode\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 127\u001b[0m logger \u001b[38;5;241m=\u001b[39m get_logger()\n\u001b[1;32m 128\u001b[0m logger\u001b[38;5;241m.\u001b[39mlog(log_level, start_line)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/compiler/snowflake_query_compiler.py:584\u001b[0m, in \u001b[0;36mSnowflakeQueryCompiler.from_pandas\u001b[0;34m(cls, df, *args, **kwargs)\u001b[0m\n\u001b[1;32m 579\u001b[0m current_df_data_column_snowflake_quoted_identifiers\u001b[38;5;241m.\u001b[39mappend(\n\u001b[1;32m 580\u001b[0m row_position_snowflake_quoted_identifier\n\u001b[1;32m 581\u001b[0m )\n\u001b[1;32m 583\u001b[0m \u001b[38;5;66;03m# create snowpark df\u001b[39;00m\n\u001b[0;32m--> 584\u001b[0m snowpark_pandas_types, snowpark_types \u001b[38;5;241m=\u001b[39m \u001b[43minfer_snowpark_types_from_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdf\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 585\u001b[0m ordered_dataframe \u001b[38;5;241m=\u001b[39m create_ordered_dataframe_from_pandas(\n\u001b[1;32m 586\u001b[0m df,\n\u001b[1;32m 587\u001b[0m snowflake_quoted_identifiers\u001b[38;5;241m=\u001b[39mcurrent_df_data_column_snowflake_quoted_identifiers,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 592\u001b[0m row_position_snowflake_quoted_identifier\u001b[38;5;241m=\u001b[39mrow_position_snowflake_quoted_identifier,\n\u001b[1;32m 593\u001b[0m )\n\u001b[1;32m 595\u001b[0m \u001b[38;5;66;03m# construct the internal frame for the dataframe\u001b[39;00m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/utils.py:1051\u001b[0m, in \u001b[0;36minfer_snowpark_types_from_pandas\u001b[0;34m(df)\u001b[0m\n\u001b[1;32m 1049\u001b[0m snowpark_types \u001b[38;5;241m=\u001b[39m []\n\u001b[1;32m 1050\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m _, column \u001b[38;5;129;01min\u001b[39;00m df\u001b[38;5;241m.\u001b[39mitems():\n\u001b[0;32m-> 1051\u001b[0m snowflake_type \u001b[38;5;241m=\u001b[39m \u001b[43minfer_series_type\u001b[49m\u001b[43m(\u001b[49m\u001b[43mcolumn\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1052\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(snowflake_type, SnowparkPandasType):\n\u001b[1;32m 1053\u001b[0m snowpark_types\u001b[38;5;241m.\u001b[39mappend(snowflake_type\u001b[38;5;241m.\u001b[39msnowpark_type)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/type_utils.py:199\u001b[0m, in \u001b[0;36minfer_series_type\u001b[0;34m(series)\u001b[0m\n\u001b[1;32m 197\u001b[0m snowflake_type \u001b[38;5;241m=\u001b[39m VariantType()\n\u001b[1;32m 198\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 199\u001b[0m snowflake_type \u001b[38;5;241m=\u001b[39m \u001b[43mTypeMapper\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_snowflake\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata_type\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 201\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m snowflake_type\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/type_utils.py:258\u001b[0m, in \u001b[0;36mTypeMapper.to_snowflake\u001b[0;34m(cls, p)\u001b[0m\n\u001b[1;32m 256\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m PANDAS_TO_SNOWFLAKE_MAP[p]\n\u001b[1;32m 257\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mKeyError\u001b[39;00m:\n\u001b[0;32m--> 258\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpandas type \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mp\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m is not implemented\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: pandas type period[M] is not implemented" + ] + } + ], + "source": [ + "periods = [pd.Period(\"2012-01\"), pd.Period(\"2012-02\"), pd.Period(\"2012-03\")]\n", + "\n", + "ts = pd.Series(np.random.randn(3), periods)\n", + "\n", + "type(ts.index)" + ] + }, + { + "cell_type": "markdown", + "id": "f927521e-535f-4d26-8a4c-d8fda7319000", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# Converting to timestamps" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "id": "bad4e888-44cd-4c49-8c21-be7590a8ae3f", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:12.144363Z", + "iopub.status.busy": "2024-08-29T18:28:12.144216Z", + "iopub.status.idle": "2024-08-29T18:28:13.269701Z", + "shell.execute_reply": "2024-08-29T18:28:13.269372Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:snowflake.snowpark.modin.plugin.utils.warning_message:`to_datetime` implementation may has mismatches with pandas:\n", + "Snowflake automatic format detection is used when a format is not provided. In this case Snowflake's auto format may yield different result values compared to pandas.See https://docs.snowflake.com/en/sql-reference/date-time-input-output#supported-formats-for-auto-detection for details.\n" + ] + }, + { + "ename": "SnowparkSQLException", + "evalue": "(1304): 01b6add4-0d07-1a71-0002-990386b2baf3: 100035 (22007): Timestamp 'Jul 31, 2009' is not recognized", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mSnowparkSQLException\u001b[0m Traceback (most recent call last)", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/IPython/core/formatters.py:708\u001b[0m, in \u001b[0;36mPlainTextFormatter.__call__\u001b[0;34m(self, obj)\u001b[0m\n\u001b[1;32m 701\u001b[0m stream \u001b[38;5;241m=\u001b[39m StringIO()\n\u001b[1;32m 702\u001b[0m printer \u001b[38;5;241m=\u001b[39m pretty\u001b[38;5;241m.\u001b[39mRepresentationPrinter(stream, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mverbose,\n\u001b[1;32m 703\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmax_width, \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnewline,\n\u001b[1;32m 704\u001b[0m max_seq_length\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mmax_seq_length,\n\u001b[1;32m 705\u001b[0m singleton_pprinters\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msingleton_printers,\n\u001b[1;32m 706\u001b[0m type_pprinters\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mtype_printers,\n\u001b[1;32m 707\u001b[0m deferred_pprinters\u001b[38;5;241m=\u001b[39m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdeferred_printers)\n\u001b[0;32m--> 708\u001b[0m \u001b[43mprinter\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpretty\u001b[49m\u001b[43m(\u001b[49m\u001b[43mobj\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 709\u001b[0m printer\u001b[38;5;241m.\u001b[39mflush()\n\u001b[1;32m 710\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m stream\u001b[38;5;241m.\u001b[39mgetvalue()\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/IPython/lib/pretty.py:410\u001b[0m, in \u001b[0;36mRepresentationPrinter.pretty\u001b[0;34m(self, obj)\u001b[0m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m meth(obj, \u001b[38;5;28mself\u001b[39m, cycle)\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mcls\u001b[39m \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mobject\u001b[39m \\\n\u001b[1;32m 409\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mcallable\u001b[39m(\u001b[38;5;28mcls\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__dict__\u001b[39m\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m__repr__\u001b[39m\u001b[38;5;124m'\u001b[39m)):\n\u001b[0;32m--> 410\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_repr_pprint\u001b[49m\u001b[43m(\u001b[49m\u001b[43mobj\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcycle\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 412\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m _default_pprint(obj, \u001b[38;5;28mself\u001b[39m, cycle)\n\u001b[1;32m 413\u001b[0m \u001b[38;5;28;01mfinally\u001b[39;00m:\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/IPython/lib/pretty.py:778\u001b[0m, in \u001b[0;36m_repr_pprint\u001b[0;34m(obj, p, cycle)\u001b[0m\n\u001b[1;32m 776\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"A pprint that just redirects to the normal repr function.\"\"\"\u001b[39;00m\n\u001b[1;32m 777\u001b[0m \u001b[38;5;66;03m# Find newlines and replace them with p.break_()\u001b[39;00m\n\u001b[0;32m--> 778\u001b[0m output \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mrepr\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mobj\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 779\u001b[0m lines \u001b[38;5;241m=\u001b[39m output\u001b[38;5;241m.\u001b[39msplitlines()\n\u001b[1;32m 780\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m p\u001b[38;5;241m.\u001b[39mgroup():\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:414\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_method_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 409\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 412\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 413\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 414\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 415\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_method_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_method_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/series.py:477\u001b[0m, in \u001b[0;36mSeries.__repr__\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 470\u001b[0m num_rows \u001b[38;5;241m=\u001b[39m pandas\u001b[38;5;241m.\u001b[39mget_option(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisplay.max_rows\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;241m60\u001b[39m\n\u001b[1;32m 471\u001b[0m num_cols \u001b[38;5;241m=\u001b[39m pandas\u001b[38;5;241m.\u001b[39mget_option(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisplay.max_columns\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;241m20\u001b[39m\n\u001b[1;32m 473\u001b[0m (\n\u001b[1;32m 474\u001b[0m row_count,\n\u001b[1;32m 475\u001b[0m col_count,\n\u001b[1;32m 476\u001b[0m temp_df,\n\u001b[0;32m--> 477\u001b[0m ) \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_query_compiler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbuild_repr_df\u001b[49m\u001b[43m(\u001b[49m\u001b[43mnum_rows\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mnum_cols\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 478\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(temp_df, pandas\u001b[38;5;241m.\u001b[39mDataFrame) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m temp_df\u001b[38;5;241m.\u001b[39mempty:\n\u001b[1;32m 479\u001b[0m temp_df \u001b[38;5;241m=\u001b[39m temp_df\u001b[38;5;241m.\u001b[39miloc[:, \u001b[38;5;241m0\u001b[39m]\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/modin/logging/logger_decorator.py:125\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;124;03mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[1;32m 112\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124;03mAny\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m LogMode\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 127\u001b[0m logger \u001b[38;5;241m=\u001b[39m get_logger()\n\u001b[1;32m 128\u001b[0m logger\u001b[38;5;241m.\u001b[39mlog(log_level, start_line)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/compiler/snowflake_query_compiler.py:11699\u001b[0m, in \u001b[0;36mSnowflakeQueryCompiler.build_repr_df\u001b[0;34m(self, num_rows_to_display, num_cols_to_display, times_symbol)\u001b[0m\n\u001b[1;32m 11697\u001b[0m \u001b[38;5;66;03m# retrieve frame as pandas object\u001b[39;00m\n\u001b[1;32m 11698\u001b[0m new_qc \u001b[38;5;241m=\u001b[39m SnowflakeQueryCompiler(new_frame)\n\u001b[0;32m> 11699\u001b[0m pandas_frame \u001b[38;5;241m=\u001b[39m \u001b[43mnew_qc\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 11701\u001b[0m \u001b[38;5;66;03m# remove last column after first retrieving row count\u001b[39;00m\n\u001b[1;32m 11702\u001b[0m row_count \u001b[38;5;241m=\u001b[39m \u001b[38;5;241m0\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;241m0\u001b[39m \u001b[38;5;241m==\u001b[39m \u001b[38;5;28mlen\u001b[39m(pandas_frame) \u001b[38;5;28;01melse\u001b[39;00m pandas_frame\u001b[38;5;241m.\u001b[39miat[\u001b[38;5;241m0\u001b[39m, \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m]\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/modin/logging/logger_decorator.py:125\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;124;03mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[1;32m 112\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124;03mAny\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m LogMode\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 127\u001b[0m logger \u001b[38;5;241m=\u001b[39m get_logger()\n\u001b[1;32m 128\u001b[0m logger\u001b[38;5;241m.\u001b[39mlog(log_level, start_line)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/compiler/snowflake_query_compiler.py:754\u001b[0m, in \u001b[0;36mSnowflakeQueryCompiler.to_pandas\u001b[0;34m(self, statement_params, **kwargs)\u001b[0m\n\u001b[1;32m 737\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mto_pandas\u001b[39m(\n\u001b[1;32m 738\u001b[0m \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m 739\u001b[0m \u001b[38;5;241m*\u001b[39m,\n\u001b[1;32m 740\u001b[0m statement_params: Optional[\u001b[38;5;28mdict\u001b[39m[\u001b[38;5;28mstr\u001b[39m, \u001b[38;5;28mstr\u001b[39m]] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[1;32m 741\u001b[0m \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any,\n\u001b[1;32m 742\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m native_pd\u001b[38;5;241m.\u001b[39mDataFrame:\n\u001b[1;32m 743\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 744\u001b[0m \u001b[38;5;124;03m Convert underlying query compilers data to ``pandas.DataFrame``.\u001b[39;00m\n\u001b[1;32m 745\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 752\u001b[0m \n\u001b[1;32m 753\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 754\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_modin_frame\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstatement_params\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/frame.py:895\u001b[0m, in \u001b[0;36mInternalFrame.to_pandas\u001b[0;34m(self, statement_params, **kwargs)\u001b[0m\n\u001b[1;32m 880\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 881\u001b[0m \u001b[38;5;124;03mConvert this InternalFrame to ``pandas.DataFrame``.\u001b[39;00m\n\u001b[1;32m 882\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 888\u001b[0m \u001b[38;5;124;03m The InternalFrame converted to pandas.\u001b[39;00m\n\u001b[1;32m 889\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 890\u001b[0m ordered_dataframe \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mordered_dataframe\u001b[38;5;241m.\u001b[39mselect(\n\u001b[1;32m 891\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mindex_column_snowflake_quoted_identifiers\n\u001b[1;32m 892\u001b[0m \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdata_column_snowflake_quoted_identifiers\n\u001b[1;32m 893\u001b[0m )\n\u001b[0;32m--> 895\u001b[0m native_df \u001b[38;5;241m=\u001b[39m \u001b[43msnowpark_to_pandas_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 896\u001b[0m \u001b[43m \u001b[49m\u001b[43mordered_dataframe\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 897\u001b[0m \u001b[43m \u001b[49m\u001b[43mstatement_params\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstatement_params\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 898\u001b[0m \u001b[43m \u001b[49m\u001b[43mcached_snowpark_pandas_types\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcached_index_column_snowpark_pandas_types\u001b[49m\n\u001b[1;32m 899\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mcached_data_column_snowpark_pandas_types\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 900\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 901\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 903\u001b[0m \u001b[38;5;66;03m# to_pandas() does not preserve the index information and will just return a\u001b[39;00m\n\u001b[1;32m 904\u001b[0m \u001b[38;5;66;03m# RangeIndex. Therefore, we need to set the index column manually\u001b[39;00m\n\u001b[1;32m 905\u001b[0m native_df\u001b[38;5;241m.\u001b[39mset_index(\n\u001b[1;32m 906\u001b[0m [\n\u001b[1;32m 907\u001b[0m extract_pandas_label_from_snowflake_quoted_identifier(identifier)\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 910\u001b[0m inplace\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 911\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/utils.py:1334\u001b[0m, in \u001b[0;36msnowpark_to_pandas_helper\u001b[0;34m(ordered_dataframe, cached_snowpark_pandas_types, statement_params, **kwargs)\u001b[0m\n\u001b[1;32m 1329\u001b[0m \u001b[38;5;66;03m# ensure that snowpark_df has unique identifiers, so the native pandas DataFrame object created here\u001b[39;00m\n\u001b[1;32m 1330\u001b[0m \u001b[38;5;66;03m# also does have unique column names which is a prerequisite for the post-processing logic following.\u001b[39;00m\n\u001b[1;32m 1331\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m is_duplicate_free(\n\u001b[1;32m 1332\u001b[0m column_identifiers \u001b[38;5;241m+\u001b[39m variant_type_typeof_identifiers\n\u001b[1;32m 1333\u001b[0m ), \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSnowpark DataFrame to convert must have unique column identifiers\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m-> 1334\u001b[0m pandas_df \u001b[38;5;241m=\u001b[39m \u001b[43mordered_dataframe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_pandas\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstatement_params\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstatement_params\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1336\u001b[0m \u001b[38;5;66;03m# Step 3: perform post-processing\u001b[39;00m\n\u001b[1;32m 1337\u001b[0m \u001b[38;5;66;03m# If the dataframe has no rows, do not perform this. Using the result of the `apply` on\u001b[39;00m\n\u001b[1;32m 1338\u001b[0m \u001b[38;5;66;03m# an empty frame would erroneously update the dtype of the column to be `float64` instead of `object`.\u001b[39;00m\n\u001b[1;32m 1339\u001b[0m \u001b[38;5;66;03m# TODO SNOW-982779: verify correctness of this behavior\u001b[39;00m\n\u001b[1;32m 1340\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m pandas_df\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m] \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m0\u001b[39m:\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/ordered_dataframe.py:1786\u001b[0m, in \u001b[0;36mOrderedDataFrame.to_pandas\u001b[0;34m(self, statement_params, block, **kwargs)\u001b[0m\n\u001b[1;32m 1784\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1785\u001b[0m statement_params\u001b[38;5;241m.\u001b[39mupdate(get_default_snowpark_pandas_statement_params())\n\u001b[0;32m-> 1786\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43msnowpark_dataframe\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_pandas\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1787\u001b[0m \u001b[43m \u001b[49m\u001b[43mstatement_params\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstatement_params\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mblock\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mblock\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 1788\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/_internal/telemetry.py:153\u001b[0m, in \u001b[0;36mdf_collect_api_telemetry..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 150\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 151\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 152\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m args[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39m_session\u001b[38;5;241m.\u001b[39mquery_history() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 153\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 154\u001b[0m plan \u001b[38;5;241m=\u001b[39m args[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39m_select_statement \u001b[38;5;129;01mor\u001b[39;00m args[\u001b[38;5;241m0\u001b[39m]\u001b[38;5;241m.\u001b[39m_plan\n\u001b[1;32m 155\u001b[0m api_calls \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 156\u001b[0m \u001b[38;5;241m*\u001b[39mplan\u001b[38;5;241m.\u001b[39mapi_calls,\n\u001b[1;32m 157\u001b[0m {TelemetryField\u001b[38;5;241m.\u001b[39mNAME\u001b[38;5;241m.\u001b[39mvalue: \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDataFrame.\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfunc\u001b[38;5;241m.\u001b[39m\u001b[38;5;18m__name__\u001b[39m\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m},\n\u001b[1;32m 158\u001b[0m ]\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/dataframe.py:806\u001b[0m, in \u001b[0;36mDataFrame.to_pandas\u001b[0;34m(self, statement_params, block, **kwargs)\u001b[0m\n\u001b[1;32m 787\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 788\u001b[0m \u001b[38;5;124;03mExecutes the query representing this DataFrame and returns the result as a\u001b[39;00m\n\u001b[1;32m 789\u001b[0m \u001b[38;5;124;03m`pandas DataFrame `_.\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 803\u001b[0m \u001b[38;5;124;03m :func:`Session.sql` can only be a SELECT statement.\u001b[39;00m\n\u001b[1;32m 804\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 805\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m open_telemetry_context_manager(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mto_pandas, \u001b[38;5;28mself\u001b[39m):\n\u001b[0;32m--> 806\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_session\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_conn\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 807\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_plan\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 808\u001b[0m \u001b[43m \u001b[49m\u001b[43mto_pandas\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 809\u001b[0m \u001b[43m \u001b[49m\u001b[43mblock\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mblock\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 810\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43m_AsyncResultType\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mPANDAS\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 811\u001b[0m \u001b[43m \u001b[49m\u001b[43m_statement_params\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcreate_or_update_statement_params_with_query_tag\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 812\u001b[0m \u001b[43m \u001b[49m\u001b[43mstatement_params\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_statement_params\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 813\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_session\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mquery_tag\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 814\u001b[0m \u001b[43m \u001b[49m\u001b[43mSKIP_LEVELS_TWO\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 815\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 816\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 817\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 819\u001b[0m \u001b[38;5;66;03m# if the returned result is not a pandas dataframe, raise Exception\u001b[39;00m\n\u001b[1;32m 820\u001b[0m \u001b[38;5;66;03m# this might happen when calling this method with non-select commands\u001b[39;00m\n\u001b[1;32m 821\u001b[0m \u001b[38;5;66;03m# e.g., session.sql(\"create ...\").to_pandas()\u001b[39;00m\n\u001b[1;32m 822\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m block:\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/_internal/server_connection.py:526\u001b[0m, in \u001b[0;36mServerConnection.execute\u001b[0;34m(self, plan, to_pandas, to_iter, block, data_type, log_on_exception, case_sensitive, **kwargs)\u001b[0m\n\u001b[1;32m 516\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m (\n\u001b[1;32m 517\u001b[0m is_in_stored_procedure()\n\u001b[1;32m 518\u001b[0m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m block\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 521\u001b[0m )\n\u001b[1;32m 522\u001b[0m ): \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 523\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(\n\u001b[1;32m 524\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mAsync query is not supported in stored procedure yet\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 525\u001b[0m )\n\u001b[0;32m--> 526\u001b[0m result_set, result_meta \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_result_set\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 527\u001b[0m \u001b[43m \u001b[49m\u001b[43mplan\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 528\u001b[0m \u001b[43m \u001b[49m\u001b[43mto_pandas\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 529\u001b[0m \u001b[43m \u001b[49m\u001b[43mto_iter\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 530\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 531\u001b[0m \u001b[43m \u001b[49m\u001b[43mblock\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mblock\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 532\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 533\u001b[0m \u001b[43m \u001b[49m\u001b[43mlog_on_exception\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlog_on_exception\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 534\u001b[0m \u001b[43m \u001b[49m\u001b[43mcase_sensitive\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcase_sensitive\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 535\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 536\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m block:\n\u001b[1;32m 537\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m result_set\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/_internal/analyzer/snowflake_plan.py:207\u001b[0m, in \u001b[0;36mSnowflakePlan.Decorator.wrap_exception..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 203\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 204\u001b[0m ne \u001b[38;5;241m=\u001b[39m SnowparkClientExceptionMessages\u001b[38;5;241m.\u001b[39mSQL_EXCEPTION_FROM_PROGRAMMING_ERROR(\n\u001b[1;32m 205\u001b[0m e\n\u001b[1;32m 206\u001b[0m )\n\u001b[0;32m--> 207\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ne\u001b[38;5;241m.\u001b[39mwith_traceback(tb) \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/_internal/analyzer/snowflake_plan.py:138\u001b[0m, in \u001b[0;36mSnowflakePlan.Decorator.wrap_exception..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 136\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 137\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 138\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 139\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m snowflake\u001b[38;5;241m.\u001b[39mconnector\u001b[38;5;241m.\u001b[39merrors\u001b[38;5;241m.\u001b[39mProgrammingError \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 140\u001b[0m query \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mgetattr\u001b[39m(e, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;28;01mNone\u001b[39;00m)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/_internal/server_connection.py:630\u001b[0m, in \u001b[0;36mServerConnection.get_result_set\u001b[0;34m(self, plan, to_pandas, to_iter, block, data_type, log_on_exception, case_sensitive, ignore_results, **kwargs)\u001b[0m\n\u001b[1;32m 628\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m holder, id_ \u001b[38;5;129;01min\u001b[39;00m placeholders\u001b[38;5;241m.\u001b[39mitems():\n\u001b[1;32m 629\u001b[0m final_query \u001b[38;5;241m=\u001b[39m final_query\u001b[38;5;241m.\u001b[39mreplace(holder, id_)\n\u001b[0;32m--> 630\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mrun_query\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 631\u001b[0m \u001b[43m \u001b[49m\u001b[43mfinal_query\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 632\u001b[0m \u001b[43m \u001b[49m\u001b[43mto_pandas\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 633\u001b[0m \u001b[43m \u001b[49m\u001b[43mto_iter\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01mand\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43m(\u001b[49m\u001b[43mi\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m==\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;28;43mlen\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43mmain_queries\u001b[49m\u001b[43m)\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m-\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 634\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_ddl_on_temp_object\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquery\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mis_ddl_on_temp_object\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 635\u001b[0m \u001b[43m \u001b[49m\u001b[43mblock\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;129;43;01mnot\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mis_last\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 636\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdata_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 637\u001b[0m \u001b[43m \u001b[49m\u001b[43masync_job_plan\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mplan\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 638\u001b[0m \u001b[43m \u001b[49m\u001b[43mlog_on_exception\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlog_on_exception\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 639\u001b[0m \u001b[43m \u001b[49m\u001b[43mcase_sensitive\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcase_sensitive\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 640\u001b[0m \u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mquery\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 641\u001b[0m \u001b[43m \u001b[49m\u001b[43mignore_results\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mignore_results\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 642\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 643\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 644\u001b[0m placeholders[query\u001b[38;5;241m.\u001b[39mquery_id_place_holder] \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 645\u001b[0m result[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msfqid\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_last \u001b[38;5;28;01melse\u001b[39;00m result\u001b[38;5;241m.\u001b[39mquery_id\n\u001b[1;32m 646\u001b[0m )\n\u001b[1;32m 647\u001b[0m result_meta \u001b[38;5;241m=\u001b[39m get_new_description(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_cursor)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/_internal/server_connection.py:125\u001b[0m, in \u001b[0;36mServerConnection._Decorator.wrap_exception..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 121\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m SnowparkClientExceptionMessages\u001b[38;5;241m.\u001b[39mSERVER_SESSION_EXPIRED(\n\u001b[1;32m 122\u001b[0m ex\u001b[38;5;241m.\u001b[39mcause\n\u001b[1;32m 123\u001b[0m )\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m ex:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ex\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/_internal/server_connection.py:119\u001b[0m, in \u001b[0;36mServerConnection._Decorator.wrap_exception..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 117\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m SnowparkClientExceptionMessages\u001b[38;5;241m.\u001b[39mSERVER_SESSION_HAS_BEEN_CLOSED()\n\u001b[1;32m 118\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 119\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 120\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m ReauthenticationRequest \u001b[38;5;28;01mas\u001b[39;00m ex:\n\u001b[1;32m 121\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m SnowparkClientExceptionMessages\u001b[38;5;241m.\u001b[39mSERVER_SESSION_EXPIRED(\n\u001b[1;32m 122\u001b[0m ex\u001b[38;5;241m.\u001b[39mcause\n\u001b[1;32m 123\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/_internal/server_connection.py:433\u001b[0m, in \u001b[0;36mServerConnection.run_query\u001b[0;34m(self, query, to_pandas, to_iter, is_ddl_on_temp_object, block, data_type, async_job_plan, log_on_exception, case_sensitive, params, num_statements, ignore_results, **kwargs)\u001b[0m\n\u001b[1;32m 431\u001b[0m query_id_log \u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m [queryID: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mex\u001b[38;5;241m.\u001b[39msfqid\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m]\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(ex, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msfqid\u001b[39m\u001b[38;5;124m\"\u001b[39m) \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 432\u001b[0m logger\u001b[38;5;241m.\u001b[39merror(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mFailed to execute query\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mquery_id_log\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mquery\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;130;01m\\n\u001b[39;00m\u001b[38;5;132;01m{\u001b[39;00mex\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 433\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m ex\n\u001b[1;32m 435\u001b[0m \u001b[38;5;66;03m# fetch_pandas_all/batches() only works for SELECT statements\u001b[39;00m\n\u001b[1;32m 436\u001b[0m \u001b[38;5;66;03m# We call fetchall() if fetch_pandas_all/batches() fails,\u001b[39;00m\n\u001b[1;32m 437\u001b[0m \u001b[38;5;66;03m# because when the query plan has multiple queries, it will\u001b[39;00m\n\u001b[1;32m 438\u001b[0m \u001b[38;5;66;03m# have non-select statements, and it shouldn't fail if the user\u001b[39;00m\n\u001b[1;32m 439\u001b[0m \u001b[38;5;66;03m# calls to_pandas() to execute the query.\u001b[39;00m\n\u001b[1;32m 440\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m block:\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/_internal/server_connection.py:418\u001b[0m, in \u001b[0;36mServerConnection.run_query\u001b[0;34m(self, query, to_pandas, to_iter, is_ddl_on_temp_object, block, data_type, async_job_plan, log_on_exception, case_sensitive, params, num_statements, ignore_results, **kwargs)\u001b[0m\n\u001b[1;32m 416\u001b[0m kwargs[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_statement_params\u001b[39m\u001b[38;5;124m\"\u001b[39m][\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mSNOWPARK_SKIP_TXN_COMMIT_IN_DDL\u001b[39m\u001b[38;5;124m\"\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 417\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m block:\n\u001b[0;32m--> 418\u001b[0m results_cursor \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute_and_notify_query_listener\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mquery\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mparams\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mparams\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 421\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mExecute query [queryID: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresults_cursor\u001b[38;5;241m.\u001b[39msfqid\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m] \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mquery\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 422\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/_internal/server_connection.py:369\u001b[0m, in \u001b[0;36mServerConnection.execute_and_notify_query_listener\u001b[0;34m(self, query, **kwargs)\u001b[0m\n\u001b[1;32m 366\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mexecute_and_notify_query_listener\u001b[39m(\n\u001b[1;32m 367\u001b[0m \u001b[38;5;28mself\u001b[39m, query: \u001b[38;5;28mstr\u001b[39m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs: Any\n\u001b[1;32m 368\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m SnowflakeCursor:\n\u001b[0;32m--> 369\u001b[0m results_cursor \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_cursor\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mexecute\u001b[49m\u001b[43m(\u001b[49m\u001b[43mquery\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 370\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mnotify_query_listeners(\n\u001b[1;32m 371\u001b[0m QueryRecord(results_cursor\u001b[38;5;241m.\u001b[39msfqid, results_cursor\u001b[38;5;241m.\u001b[39mquery)\n\u001b[1;32m 372\u001b[0m )\n\u001b[1;32m 373\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m results_cursor\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/connector/cursor.py:1080\u001b[0m, in \u001b[0;36mSnowflakeCursor.execute\u001b[0;34m(self, command, params, _bind_stage, timeout, _exec_async, _no_retry, _do_reset, _put_callback, _put_azure_callback, _put_callback_output_stream, _get_callback, _get_azure_callback, _get_callback_output_stream, _show_progress_bar, _statement_params, _is_internal, _describe_only, _no_results, _is_put_get, _raise_put_get_error, _force_put_overwrite, _skip_upload_on_content_match, file_stream, num_statements)\u001b[0m\n\u001b[1;32m 1076\u001b[0m is_integrity_error \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 1077\u001b[0m code \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m100072\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1078\u001b[0m ) \u001b[38;5;66;03m# NULL result in a non-nullable column\u001b[39;00m\n\u001b[1;32m 1079\u001b[0m error_class \u001b[38;5;241m=\u001b[39m IntegrityError \u001b[38;5;28;01mif\u001b[39;00m is_integrity_error \u001b[38;5;28;01melse\u001b[39;00m ProgrammingError\n\u001b[0;32m-> 1080\u001b[0m \u001b[43mError\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43merrorhandler_wrapper\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconnection\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merror_class\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merrvalue\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1081\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/connector/errors.py:290\u001b[0m, in \u001b[0;36mError.errorhandler_wrapper\u001b[0;34m(connection, cursor, error_class, error_value)\u001b[0m\n\u001b[1;32m 267\u001b[0m \u001b[38;5;129m@staticmethod\u001b[39m\n\u001b[1;32m 268\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21merrorhandler_wrapper\u001b[39m(\n\u001b[1;32m 269\u001b[0m connection: SnowflakeConnection \u001b[38;5;241m|\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 272\u001b[0m error_value: \u001b[38;5;28mdict\u001b[39m[\u001b[38;5;28mstr\u001b[39m, Any],\n\u001b[1;32m 273\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 274\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"Error handler wrapper that calls the errorhandler method.\u001b[39;00m\n\u001b[1;32m 275\u001b[0m \n\u001b[1;32m 276\u001b[0m \u001b[38;5;124;03m Args:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 287\u001b[0m \u001b[38;5;124;03m exception to the first handler in that order.\u001b[39;00m\n\u001b[1;32m 288\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 290\u001b[0m handed_over \u001b[38;5;241m=\u001b[39m \u001b[43mError\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mhand_to_other_handler\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 291\u001b[0m \u001b[43m \u001b[49m\u001b[43mconnection\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 292\u001b[0m \u001b[43m \u001b[49m\u001b[43mcursor\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 293\u001b[0m \u001b[43m \u001b[49m\u001b[43merror_class\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 294\u001b[0m \u001b[43m \u001b[49m\u001b[43merror_value\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 295\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 296\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m handed_over:\n\u001b[1;32m 297\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m Error\u001b[38;5;241m.\u001b[39merrorhandler_make_exception(\n\u001b[1;32m 298\u001b[0m error_class,\n\u001b[1;32m 299\u001b[0m error_value,\n\u001b[1;32m 300\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/connector/errors.py:345\u001b[0m, in \u001b[0;36mError.hand_to_other_handler\u001b[0;34m(connection, cursor, error_class, error_value)\u001b[0m\n\u001b[1;32m 343\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m cursor \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 344\u001b[0m cursor\u001b[38;5;241m.\u001b[39mmessages\u001b[38;5;241m.\u001b[39mappend((error_class, error_value))\n\u001b[0;32m--> 345\u001b[0m \u001b[43mcursor\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43merrorhandler\u001b[49m\u001b[43m(\u001b[49m\u001b[43mconnection\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcursor\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merror_class\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merror_value\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 346\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m 347\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m connection \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/connector/errors.py:221\u001b[0m, in \u001b[0;36mError.default_errorhandler\u001b[0;34m(connection, cursor, error_class, error_value)\u001b[0m\n\u001b[1;32m 219\u001b[0m errno \u001b[38;5;241m=\u001b[39m error_value\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124merrno\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 220\u001b[0m done_format_msg \u001b[38;5;241m=\u001b[39m error_value\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdone_format_msg\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 221\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m error_class(\n\u001b[1;32m 222\u001b[0m msg\u001b[38;5;241m=\u001b[39merror_value\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmsg\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m 223\u001b[0m errno\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01mif\u001b[39;00m errno \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mint\u001b[39m(errno),\n\u001b[1;32m 224\u001b[0m sqlstate\u001b[38;5;241m=\u001b[39merror_value\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msqlstate\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m 225\u001b[0m sfqid\u001b[38;5;241m=\u001b[39merror_value\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124msfqid\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m 226\u001b[0m query\u001b[38;5;241m=\u001b[39merror_value\u001b[38;5;241m.\u001b[39mget(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery\u001b[39m\u001b[38;5;124m\"\u001b[39m),\n\u001b[1;32m 227\u001b[0m done_format_msg\u001b[38;5;241m=\u001b[39m(\n\u001b[1;32m 228\u001b[0m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01mif\u001b[39;00m done_format_msg \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28mbool\u001b[39m(done_format_msg)\n\u001b[1;32m 229\u001b[0m ),\n\u001b[1;32m 230\u001b[0m connection\u001b[38;5;241m=\u001b[39mconnection,\n\u001b[1;32m 231\u001b[0m cursor\u001b[38;5;241m=\u001b[39mcursor,\n\u001b[1;32m 232\u001b[0m )\n", + "\u001b[0;31mSnowparkSQLException\u001b[0m: (1304): 01b6add4-0d07-1a71-0002-990386b2baf3: 100035 (22007): Timestamp 'Jul 31, 2009' is not recognized" + ] + } + ], + "source": [ + "pd.to_datetime(pd.Series([\"Jul 31, 2009\", \"Jan 10, 2010\", None]))" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "id": "bc0d555d-e2af-42fe-96af-024274ce001e", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:13.304137Z", + "iopub.status.busy": "2024-08-29T18:28:13.303980Z", + "iopub.status.idle": "2024-08-29T18:28:14.006914Z", + "shell.execute_reply": "2024-08-29T18:28:14.006094Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2005-11-23', '2010-12-31'], dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.to_datetime([\"2005/11/23\", \"2010/12/31\"])" + ] + }, + { + "cell_type": "markdown", + "id": "12126dc9-6fad-4667-a3ce-82ccb0ff54df", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### If you use dates which start with the day first (i.e. European style), you can pass the dayfirst flag:" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "id": "88419653-e387-4cb7-a25a-428dccd767a3", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:14.011769Z", + "iopub.status.busy": "2024-08-29T18:28:14.011419Z", + "iopub.status.idle": "2024-08-29T18:28:14.602197Z", + "shell.execute_reply": "2024-08-29T18:28:14.601782Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2012-01-04 10:00:00'], dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 28, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.to_datetime([\"04-01-2012 10:00\"], dayfirst=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "id": "e5f75293-3b7f-47ba-9348-9b71aa6ea774", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:14.606198Z", + "iopub.status.busy": "2024-08-29T18:28:14.605983Z", + "iopub.status.idle": "2024-08-29T18:28:15.181397Z", + "shell.execute_reply": "2024-08-29T18:28:15.180440Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "UserWarning: Parsing dates in %m-%d-%Y %H:%M format when dayfirst=True was specified. Pass `dayfirst=False` or specify a format to silence this warning.\n" + ] + }, + { + "data": { + "text/plain": [ + "DatetimeIndex(['2012-04-14 10:00:00'], dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 29, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.to_datetime([\"04-14-2012 10:00\"], dayfirst=True)" + ] + }, + { + "cell_type": "markdown", + "id": "901c62d1-5db8-47d7-b32a-f3e911f02036", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### You can also use the DatetimeIndex constructor directly:" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "id": "5d8cfe2e-b991-4036-acdf-a6b4da02f1c0", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:15.186375Z", + "iopub.status.busy": "2024-08-29T18:28:15.186005Z", + "iopub.status.idle": "2024-08-29T18:28:15.651294Z", + "shell.execute_reply": "2024-08-29T18:28:15.649950Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2018-01-01', '2018-01-03', '2018-01-05'], dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 30, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.DatetimeIndex([\"2018-01-01\", \"2018-01-03\", \"2018-01-05\"])" + ] + }, + { + "cell_type": "markdown", + "id": "b8ebb2fc-173c-406a-ade8-d807b1073b2b", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### The string ‘infer’ can be passed in order to set the frequency of the index as the inferred frequency upon creation:" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "id": "f06dcd55-ebf6-4c33-b299-8c8f7fde94b3", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:15.659769Z", + "iopub.status.busy": "2024-08-29T18:28:15.659375Z", + "iopub.status.idle": "2024-08-29T18:28:16.122459Z", + "shell.execute_reply": "2024-08-29T18:28:16.122016Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2018-01-01', '2018-01-03', '2018-01-05'], dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 31, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.DatetimeIndex([\"2018-01-01\", \"2018-01-03\", \"2018-01-05\"], freq=\"infer\")" + ] + }, + { + "cell_type": "markdown", + "id": "82fd0285-3c12-4429-a10e-d505192fe2a1", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Providing a format argument" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "id": "bce3c8c4-bfed-432c-a6f1-1b18151843bc", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:16.125350Z", + "iopub.status.busy": "2024-08-29T18:28:16.125190Z", + "iopub.status.idle": "2024-08-29T18:28:16.128444Z", + "shell.execute_reply": "2024-08-29T18:28:16.127993Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Timestamp('2010-11-12 00:00:00')" + ] + }, + "execution_count": 32, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.to_datetime(\"2010/11/12\", format=\"%Y/%m/%d\")" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "id": "6adee443-0929-49a7-ab1f-d3f3a2d7d164", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:16.130678Z", + "iopub.status.busy": "2024-08-29T18:28:16.130550Z", + "iopub.status.idle": "2024-08-29T18:28:16.133755Z", + "shell.execute_reply": "2024-08-29T18:28:16.133405Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Timestamp('2010-11-12 00:00:00')" + ] + }, + "execution_count": 33, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.to_datetime(\"12-11-2010 00:00\", format=\"%d-%m-%Y %H:%M\")" + ] + }, + { + "cell_type": "markdown", + "id": "4484371f-ef3a-4e7f-a16a-83dbb0a74741", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Assembling datetime from multiple DataFrame columns" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "id": "00230009-1790-48ea-b58b-d68e162b1d8d", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:16.136051Z", + "iopub.status.busy": "2024-08-29T18:28:16.135875Z", + "iopub.status.idle": "2024-08-29T18:28:16.645291Z", + "shell.execute_reply": "2024-08-29T18:28:16.641752Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0 2015-02-04 02:00:00\n", + "1 2016-03-05 03:00:00\n", + "dtype: datetime64[ns]" + ] + }, + "execution_count": 34, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = pd.DataFrame(\n", + " {\"year\": [2015, 2016], \"month\": [2, 3], \"day\": [4, 5], \"hour\": [2, 3]}\n", + ")\n", + "\n", + "\n", + "pd.to_datetime(df)" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "id": "d1481451-a63f-4f1d-8c58-b570ad099bca", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:16.651000Z", + "iopub.status.busy": "2024-08-29T18:28:16.650610Z", + "iopub.status.idle": "2024-08-29T18:28:17.118784Z", + "shell.execute_reply": "2024-08-29T18:28:17.117850Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "0 2015-02-04\n", + "1 2016-03-05\n", + "dtype: datetime64[ns]" + ] + }, + "execution_count": 35, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.to_datetime(df[[\"year\", \"month\", \"day\"]])" + ] + }, + { + "cell_type": "markdown", + "id": "d0f4fd47-3a16-4b5a-99ca-ef698e8188d1", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Invalid data" + ] + }, + { + "cell_type": "markdown", + "id": "273d5d66-590f-4d88-a3c6-2623827ed8f1", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### The default behavior, errors='raise', is to raise when unparsable:" + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "id": "3a90e705-7028-4604-b1c8-ad37d9ad804c", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:17.123296Z", + "iopub.status.busy": "2024-08-29T18:28:17.123050Z", + "iopub.status.idle": "2024-08-29T18:28:17.450271Z", + "shell.execute_reply": "2024-08-29T18:28:17.449895Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "ValueError", + "evalue": "time data \"asd\" doesn't match format \"%Y/%m/%d\", at position 1. You might want to try:\n - passing `format` if your strings have a consistent format;\n - passing `format='ISO8601'` if your strings are all ISO8601 but not necessarily in exactly the same format;\n - passing `format='mixed'`, and the format will be inferred for each element individually. You might want to use `dayfirst` alongside this.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[36], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_datetime\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43m2009/07/31\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43masd\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mraise\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:454\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_standalone_function_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 447\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 448\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 449\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 452\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 453\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 454\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 455\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 456\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 457\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 458\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 459\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/general.py:1786\u001b[0m, in \u001b[0;36mto_datetime\u001b[0;34m(arg, errors, dayfirst, yearfirst, utc, format, exact, unit, infer_datetime_format, origin, cache)\u001b[0m\n\u001b[1;32m 1782\u001b[0m raise_if_native_pandas_objects(arg)\n\u001b[1;32m 1784\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(arg, (DataFrame, Series, pd\u001b[38;5;241m.\u001b[39mIndex)):\n\u001b[1;32m 1785\u001b[0m \u001b[38;5;66;03m# use pandas.to_datetime to convert local data to datetime\u001b[39;00m\n\u001b[0;32m-> 1786\u001b[0m res \u001b[38;5;241m=\u001b[39m \u001b[43mpandas\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_datetime\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1787\u001b[0m \u001b[43m \u001b[49m\u001b[43marg\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1788\u001b[0m \u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1789\u001b[0m \u001b[43m \u001b[49m\u001b[43mdayfirst\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1790\u001b[0m \u001b[43m \u001b[49m\u001b[43myearfirst\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1791\u001b[0m \u001b[43m \u001b[49m\u001b[43mutc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1792\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;28;43mformat\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1793\u001b[0m \u001b[43m \u001b[49m\u001b[43mexact\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1794\u001b[0m \u001b[43m \u001b[49m\u001b[43munit\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1795\u001b[0m \u001b[43m \u001b[49m\u001b[43minfer_datetime_format\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1796\u001b[0m \u001b[43m \u001b[49m\u001b[43morigin\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1797\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1798\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1799\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(res, pandas\u001b[38;5;241m.\u001b[39mSeries):\n\u001b[1;32m 1800\u001b[0m res \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mSeries(res)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/pandas/core/tools/datetimes.py:1099\u001b[0m, in \u001b[0;36mto_datetime\u001b[0;34m(arg, errors, dayfirst, yearfirst, utc, format, exact, unit, infer_datetime_format, origin, cache)\u001b[0m\n\u001b[1;32m 1097\u001b[0m result \u001b[38;5;241m=\u001b[39m _convert_and_box_cache(argc, cache_array)\n\u001b[1;32m 1098\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1099\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mconvert_listlike\u001b[49m\u001b[43m(\u001b[49m\u001b[43margc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mformat\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1100\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1101\u001b[0m result \u001b[38;5;241m=\u001b[39m convert_listlike(np\u001b[38;5;241m.\u001b[39marray([arg]), \u001b[38;5;28mformat\u001b[39m)[\u001b[38;5;241m0\u001b[39m]\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/pandas/core/tools/datetimes.py:433\u001b[0m, in \u001b[0;36m_convert_listlike_datetimes\u001b[0;34m(arg, format, name, utc, unit, errors, dayfirst, yearfirst, exact)\u001b[0m\n\u001b[1;32m 431\u001b[0m \u001b[38;5;66;03m# `format` could be inferred, or user didn't ask for mixed-format parsing.\u001b[39;00m\n\u001b[1;32m 432\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mformat\u001b[39m \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28mformat\u001b[39m \u001b[38;5;241m!=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmixed\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 433\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_array_strptime_with_fallback\u001b[49m\u001b[43m(\u001b[49m\u001b[43marg\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mname\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mutc\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mformat\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mexact\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 435\u001b[0m result, tz_parsed \u001b[38;5;241m=\u001b[39m objects_to_datetime64(\n\u001b[1;32m 436\u001b[0m arg,\n\u001b[1;32m 437\u001b[0m dayfirst\u001b[38;5;241m=\u001b[39mdayfirst,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 441\u001b[0m allow_object\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m,\n\u001b[1;32m 442\u001b[0m )\n\u001b[1;32m 444\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tz_parsed \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 445\u001b[0m \u001b[38;5;66;03m# We can take a shortcut since the datetime64 numpy array\u001b[39;00m\n\u001b[1;32m 446\u001b[0m \u001b[38;5;66;03m# is in UTC\u001b[39;00m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/pandas/core/tools/datetimes.py:467\u001b[0m, in \u001b[0;36m_array_strptime_with_fallback\u001b[0;34m(arg, name, utc, fmt, exact, errors)\u001b[0m\n\u001b[1;32m 456\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_array_strptime_with_fallback\u001b[39m(\n\u001b[1;32m 457\u001b[0m arg,\n\u001b[1;32m 458\u001b[0m name,\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 462\u001b[0m errors: \u001b[38;5;28mstr\u001b[39m,\n\u001b[1;32m 463\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Index:\n\u001b[1;32m 464\u001b[0m \u001b[38;5;250m \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 465\u001b[0m \u001b[38;5;124;03m Call array_strptime, with fallback behavior depending on 'errors'.\u001b[39;00m\n\u001b[1;32m 466\u001b[0m \u001b[38;5;124;03m \"\"\"\u001b[39;00m\n\u001b[0;32m--> 467\u001b[0m result, tz_out \u001b[38;5;241m=\u001b[39m \u001b[43marray_strptime\u001b[49m\u001b[43m(\u001b[49m\u001b[43marg\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfmt\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mexact\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mexact\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43merrors\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43merrors\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mutc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mutc\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 468\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tz_out \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 469\u001b[0m unit \u001b[38;5;241m=\u001b[39m np\u001b[38;5;241m.\u001b[39mdatetime_data(result\u001b[38;5;241m.\u001b[39mdtype)[\u001b[38;5;241m0\u001b[39m]\n", + "File \u001b[0;32mstrptime.pyx:501\u001b[0m, in \u001b[0;36mpandas._libs.tslibs.strptime.array_strptime\u001b[0;34m()\u001b[0m\n", + "File \u001b[0;32mstrptime.pyx:451\u001b[0m, in \u001b[0;36mpandas._libs.tslibs.strptime.array_strptime\u001b[0;34m()\u001b[0m\n", + "File \u001b[0;32mstrptime.pyx:583\u001b[0m, in \u001b[0;36mpandas._libs.tslibs.strptime._parse_with_format\u001b[0;34m()\u001b[0m\n", + "\u001b[0;31mValueError\u001b[0m: time data \"asd\" doesn't match format \"%Y/%m/%d\", at position 1. You might want to try:\n - passing `format` if your strings have a consistent format;\n - passing `format='ISO8601'` if your strings are all ISO8601 but not necessarily in exactly the same format;\n - passing `format='mixed'`, and the format will be inferred for each element individually. You might want to use `dayfirst` alongside this." + ] + } + ], + "source": [ + "pd.to_datetime(['2009/07/31', 'asd'], errors='raise')" + ] + }, + { + "cell_type": "markdown", + "id": "71a6317f-66eb-4689-a15f-61a03b2c93c4", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### Pass errors='coerce' to convert unparsable data to NaT (not a time):" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "id": "c15076fb-8bf0-47b3-9178-e745b27b0eae", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:17.462347Z", + "iopub.status.busy": "2024-08-29T18:28:17.462201Z", + "iopub.status.idle": "2024-08-29T18:28:18.183189Z", + "shell.execute_reply": "2024-08-29T18:28:18.181891Z" + }, + "scrolled": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2009-07-31', 'NaT'], dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 37, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.to_datetime(['2009/07/31', 'asd'], errors='coerce')" + ] + }, + { + "cell_type": "markdown", + "id": "ea663c7c-13a2-458f-85cd-999116b6b7ed", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Epoch timestamps" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "id": "018f285f-ad0a-454c-abe4-7ee1fcf7acfb", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:18.192760Z", + "iopub.status.busy": "2024-08-29T18:28:18.192322Z", + "iopub.status.idle": "2024-08-29T18:28:18.755919Z", + "shell.execute_reply": "2024-08-29T18:28:18.755544Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2012-10-08 18:15:05', '2012-10-09 18:15:05',\n", + " '2012-10-10 18:15:05', '2012-10-11 18:15:05',\n", + " '2012-10-12 18:15:05'],\n", + " dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 38, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.to_datetime(\n", + " [1349720105, 1349806505, 1349892905, 1349979305, 1350065705], unit=\"s\"\n", + ")\n" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "id": "7f15dd29-958a-4279-a14a-75851710cf65", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:18.758499Z", + "iopub.status.busy": "2024-08-29T18:28:18.758306Z", + "iopub.status.idle": "2024-08-29T18:28:19.290470Z", + "shell.execute_reply": "2024-08-29T18:28:19.289419Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['1970-01-16 14:55:20.105000', '1970-01-16 14:56:46.505000',\n", + " '1970-01-16 14:58:12.905000', '1970-01-16 14:59:39.305000',\n", + " '1970-01-16 15:01:05.705000'],\n", + " dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 39, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.to_datetime(\n", + " [1349720105, 1349806505, 1349892905, 1349979305, 1350065705], unit=\"ms\"\n", + ")\n" + ] + }, + { + "cell_type": "markdown", + "id": "f796ad57-6bce-4930-9217-5da5b9d37dc0", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### Constructing a Timestamp or DatetimeIndex with an epoch timestamp with the tz argument specified will raise a ValueError. If you have epochs in wall time in another timezone, you can read the epochs as timezone-naive timestamps and then localize to the appropriate timezone:" + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "id": "f565054c-8ecf-47f3-a601-181d1b66cb59", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:19.298555Z", + "iopub.status.busy": "2024-08-29T18:28:19.298142Z", + "iopub.status.idle": "2024-08-29T18:28:19.388449Z", + "shell.execute_reply": "2024-08-29T18:28:19.388137Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Timestamp('2010-01-01 12:00:00-0800', tz='US/Pacific')" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.Timestamp(1262347200000000000).tz_localize(\"US/Pacific\")" + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "id": "06b3d9cc-9a51-4039-a9a7-84c66d4221a8", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:19.390358Z", + "iopub.status.busy": "2024-08-29T18:28:19.390244Z", + "iopub.status.idle": "2024-08-29T18:28:19.542311Z", + "shell.execute_reply": "2024-08-29T18:28:19.541936Z" + }, + "scrolled": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "Snowpark pandas does not yet support the method DatetimeIndex.tz_localize", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[41], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mDatetimeIndex\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;241;43m1262347200000000000\u001b[39;49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtz_localize\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mUS/Pacific\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:414\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_method_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 409\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 412\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 413\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 414\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 415\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_method_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_method_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:117\u001b[0m, in \u001b[0;36m_make_not_implemented_decorator..not_implemented_decorator..make_error_raiser..raise_not_implemented_method_error\u001b[0;34m(cls_or_self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 116\u001b[0m non_null_attribute_prefix \u001b[38;5;241m=\u001b[39m attribute_prefix\n\u001b[0;32m--> 117\u001b[0m \u001b[43mErrorMessage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnot_implemented\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 118\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessage\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43m_snowpark_pandas_does_not_yet_support\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m method \u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mnon_null_attribute_prefix\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m.\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mname\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 119\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:163\u001b[0m, in \u001b[0;36mErrorMessage.not_implemented\u001b[0;34m(cls, message)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnot_implemented\u001b[39m(\u001b[38;5;28mcls\u001b[39m, message: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NoReturn: \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 162\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNotImplementedError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(message)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: Snowpark pandas does not yet support the method DatetimeIndex.tz_localize" + ] + } + ], + "source": [ + "pd.DatetimeIndex([1262347200000000000]).tz_localize(\"US/Pacific\")" + ] + }, + { + "cell_type": "markdown", + "id": "86658f09-80b8-42a5-a108-efc4dddfdb09", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "### From timestamps to epoch" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "0e4e6063-a60f-4a70-adca-2cb9b3b101f8", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:19.548454Z", + "iopub.status.busy": "2024-08-29T18:28:19.548318Z", + "iopub.status.idle": "2024-08-29T18:28:20.449918Z", + "shell.execute_reply": "2024-08-29T18:28:20.449104Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2012-10-08 18:15:05', '2012-10-09 18:15:05',\n", + " '2012-10-10 18:15:05', '2012-10-11 18:15:05'],\n", + " dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 42, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "stamps = pd.date_range(\"2012-10-08 18:15:05\", periods=4, freq=\"D\")\n", + "stamps" + ] + }, + { + "cell_type": "markdown", + "id": "720ebf04-b3d2-45c7-9393-3b064c3cf6d1", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "#### We subtract the epoch (midnight at January 1, 1970 UTC) and then floor divide by the “unit” (1 second)." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "f4a38e8b-abcb-49c6-839d-01e4215d7d7a", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:20.455973Z", + "iopub.status.busy": "2024-08-29T18:28:20.455524Z", + "iopub.status.idle": "2024-08-29T18:28:21.411091Z", + "shell.execute_reply": "2024-08-29T18:28:21.409522Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Index([1349720105, 1349806505, 1349892905, 1349979305], dtype='int64')" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "(stamps - pd.Timestamp(\"1970-01-01\")) // pd.Timedelta(\"1s\")" + ] + }, + { + "cell_type": "markdown", + "id": "09d2b860-df2d-4069-b4b0-2dd1a8697faf", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Using the origin parameter" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "099f77b7-7a79-4dcd-bc37-552616cbb4c0", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:21.428839Z", + "iopub.status.busy": "2024-08-29T18:28:21.428381Z", + "iopub.status.idle": "2024-08-29T18:28:21.968928Z", + "shell.execute_reply": "2024-08-29T18:28:21.968093Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['1960-01-02', '1960-01-03', '1960-01-04'], dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.to_datetime([1, 2, 3], unit=\"D\", origin=pd.Timestamp(\"1960-01-01\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "e1878fc8-b2f3-4c93-b118-6d185ea19ce5", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:21.976143Z", + "iopub.status.busy": "2024-08-29T18:28:21.975706Z", + "iopub.status.idle": "2024-08-29T18:28:22.516700Z", + "shell.execute_reply": "2024-08-29T18:28:22.516283Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['1970-01-02', '1970-01-03', '1970-01-04'], dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.to_datetime([1, 2, 3], unit=\"D\")" + ] + }, + { + "cell_type": "markdown", + "id": "6415bc76-3599-4c37-ab86-2b841bac3b95", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# Generating ranges of timestamps" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "e349e6b7-fdda-4879-b469-9719d2b74be0", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:22.519125Z", + "iopub.status.busy": "2024-08-29T18:28:22.518961Z", + "iopub.status.idle": "2024-08-29T18:28:22.977591Z", + "shell.execute_reply": "2024-08-29T18:28:22.976600Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 46, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dates = [\n", + " datetime.datetime(2012, 5, 1),\n", + " datetime.datetime(2012, 5, 2),\n", + " datetime.datetime(2012, 5, 3),\n", + "]\n", + "\n", + "\n", + "# Note the frequency information\n", + "index = pd.DatetimeIndex(dates)\n", + "\n", + "index" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "7c293a9c-a307-4bf3-9414-e5db0abc5b55", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:22.985278Z", + "iopub.status.busy": "2024-08-29T18:28:22.984909Z", + "iopub.status.idle": "2024-08-29T18:28:23.587780Z", + "shell.execute_reply": "2024-08-29T18:28:23.586727Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2012-05-01', '2012-05-02', '2012-05-03'], dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Automatically converted to DatetimeIndex\n", + "index = pd.Index(dates)\n", + "\n", + "index" + ] + }, + { + "cell_type": "markdown", + "id": "864f9e1c-969d-489e-8e3e-aab762e4680a", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### In practice this becomes very cumbersome because we often need a very long index with a large number of timestamps. If we need timestamps on a regular frequency, we can use the date_range() and bdate_range() functions to create a DatetimeIndex. The default frequency for date_range is a calendar day while the default for bdate_range is a business day:" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "9576a971-d970-4fd0-95fe-46738536c6d3", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:23.592953Z", + "iopub.status.busy": "2024-08-29T18:28:23.592674Z", + "iopub.status.idle": "2024-08-29T18:28:24.548179Z", + "shell.execute_reply": "2024-08-29T18:28:24.546795Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04',\n", + " '2011-01-05', '2011-01-06', '2011-01-07', '2011-01-08',\n", + " '2011-01-09', '2011-01-10',\n", + " ...\n", + " '2011-12-23', '2011-12-24', '2011-12-25', '2011-12-26',\n", + " '2011-12-27', '2011-12-28', '2011-12-29', '2011-12-30',\n", + " '2011-12-31', '2012-01-01'],\n", + " dtype='datetime64[ns]', length=366, freq=None)" + ] + }, + "execution_count": 48, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "start = datetime.datetime(2011, 1, 1)\n", + "\n", + "end = datetime.datetime(2012, 1, 1)\n", + "\n", + "index = pd.date_range(start, end)\n", + "\n", + "index" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "c2661f9d-f500-4886-b199-159593a9d23c", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:24.561151Z", + "iopub.status.busy": "2024-08-29T18:28:24.560461Z", + "iopub.status.idle": "2024-08-29T18:28:24.569879Z", + "shell.execute_reply": "2024-08-29T18:28:24.569338Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',\n", + " '2011-01-07', '2011-01-10', '2011-01-11', '2011-01-12',\n", + " '2011-01-13', '2011-01-14',\n", + " ...\n", + " '2011-12-19', '2011-12-20', '2011-12-21', '2011-12-22',\n", + " '2011-12-23', '2011-12-26', '2011-12-27', '2011-12-28',\n", + " '2011-12-29', '2011-12-30'],\n", + " dtype='datetime64[ns]', length=260, freq='B')" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "index = pd.bdate_range(start, end)\n", + "\n", + "index" + ] + }, + { + "cell_type": "markdown", + "id": "ff77a6bc-8197-4e48-b8e7-f182a3f6e742", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### Convenience functions like date_range and bdate_range can utilize a variety of frequency aliases:" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "2d80a37d-b58e-4eee-a8e6-8cef919547cc", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:24.573588Z", + "iopub.status.busy": "2024-08-29T18:28:24.573353Z", + "iopub.status.idle": "2024-08-29T18:28:25.431146Z", + "shell.execute_reply": "2024-08-29T18:28:25.430316Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-30',\n", + " '2011-05-31', '2011-06-30', '2011-07-31', '2011-08-31',\n", + " '2011-09-30', '2011-10-31',\n", + " ...\n", + " '2093-07-31', '2093-08-31', '2093-09-30', '2093-10-31',\n", + " '2093-11-30', '2093-12-31', '2094-01-31', '2094-02-28',\n", + " '2094-03-31', '2094-04-30'],\n", + " dtype='datetime64[ns]', length=1000, freq=None)" + ] + }, + "execution_count": 50, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.date_range(start, periods=1000, freq=\"ME\")" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "b2d8e0eb-b332-4ad6-a503-6d92d774c65a", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:25.436421Z", + "iopub.status.busy": "2024-08-29T18:28:25.435924Z", + "iopub.status.idle": "2024-08-29T18:28:25.443235Z", + "shell.execute_reply": "2024-08-29T18:28:25.442749Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2011-01-03', '2011-04-01', '2011-07-01', '2011-10-03',\n", + " '2012-01-02', '2012-04-02', '2012-07-02', '2012-10-01',\n", + " '2013-01-01', '2013-04-01',\n", + " ...\n", + " '2071-01-01', '2071-04-01', '2071-07-01', '2071-10-01',\n", + " '2072-01-01', '2072-04-01', '2072-07-01', '2072-10-03',\n", + " '2073-01-02', '2073-04-03'],\n", + " dtype='datetime64[ns]', length=250, freq='BQS-JAN')" + ] + }, + "execution_count": 51, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.bdate_range(start, periods=250, freq=\"BQS\")" + ] + }, + { + "cell_type": "markdown", + "id": "1a42453c-bea7-470a-be57-650f42fea9a5", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### date_range and bdate_range make it easy to generate a range of dates using various combinations of parameters like start, end, periods, and freq. The start and end dates are strictly inclusive, so dates outside of those specified will not be generated:" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "9a30b89e-2a20-488f-a3a4-6106c20a6b3b", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:25.447802Z", + "iopub.status.busy": "2024-08-29T18:28:25.447304Z", + "iopub.status.idle": "2024-08-29T18:28:25.556719Z", + "shell.execute_reply": "2024-08-29T18:28:25.556007Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "offset BME is not implemented in Snowpark pandas API", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[52], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdate_range\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mend\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mBME\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:454\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_standalone_function_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 447\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 448\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 449\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 452\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 453\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 454\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 455\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 456\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 457\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 458\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 459\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/general.py:2405\u001b[0m, in \u001b[0;36mdate_range\u001b[0;34m(start, end, periods, freq, tz, normalize, name, inclusive, **kwargs)\u001b[0m\n\u001b[1;32m 2401\u001b[0m \u001b[38;5;66;03m# If a timezone is not explicitly given via `tz`, see if one can be inferred from the `start` and `end` endpoints.\u001b[39;00m\n\u001b[1;32m 2402\u001b[0m \u001b[38;5;66;03m# If more than one of these inputs provides a timezone, require that they all agree.\u001b[39;00m\n\u001b[1;32m 2403\u001b[0m tz \u001b[38;5;241m=\u001b[39m _infer_tz_from_endpoints(start, end, tz)\n\u001b[0;32m-> 2405\u001b[0m qc \u001b[38;5;241m=\u001b[39m \u001b[43mSnowflakeQueryCompiler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_date_range\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2406\u001b[0m \u001b[43m \u001b[49m\u001b[43mstart\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2407\u001b[0m \u001b[43m \u001b[49m\u001b[43mend\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mend\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2408\u001b[0m \u001b[43m \u001b[49m\u001b[43mperiods\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2409\u001b[0m \u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfreq\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2410\u001b[0m \u001b[43m \u001b[49m\u001b[43mtz\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtz\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2411\u001b[0m \u001b[43m \u001b[49m\u001b[43mleft_inclusive\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mleft_inclusive\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2412\u001b[0m \u001b[43m \u001b[49m\u001b[43mright_inclusive\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mright_inclusive\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2413\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2414\u001b[0m \u001b[38;5;66;03m# Set date range as index column.\u001b[39;00m\n\u001b[1;32m 2415\u001b[0m qc \u001b[38;5;241m=\u001b[39m qc\u001b[38;5;241m.\u001b[39mset_index_from_columns(qc\u001b[38;5;241m.\u001b[39mcolumns\u001b[38;5;241m.\u001b[39mtolist(), include_index\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/modin/logging/logger_decorator.py:125\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;124;03mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[1;32m 112\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124;03mAny\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m LogMode\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 127\u001b[0m logger \u001b[38;5;241m=\u001b[39m get_logger()\n\u001b[1;32m 128\u001b[0m logger\u001b[38;5;241m.\u001b[39mlog(log_level, start_line)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/compiler/snowflake_query_compiler.py:691\u001b[0m, in \u001b[0;36mSnowflakeQueryCompiler.from_date_range\u001b[0;34m(cls, start, end, periods, freq, tz, left_inclusive, right_inclusive)\u001b[0m\n\u001b[1;32m 689\u001b[0m dt_values \u001b[38;5;241m=\u001b[39m ns_values\u001b[38;5;241m.\u001b[39mseries_to_datetime()\n\u001b[1;32m 690\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 691\u001b[0m dt_values \u001b[38;5;241m=\u001b[39m \u001b[43mgenerator_utils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate_irregular_range\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 692\u001b[0m \u001b[43m \u001b[49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mend\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\n\u001b[1;32m 693\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 694\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 695\u001b[0m \u001b[38;5;66;03m# Create a linearly spaced date_range in local time\u001b[39;00m\n\u001b[1;32m 696\u001b[0m \u001b[38;5;66;03m# This is the original pandas source code:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 700\u001b[0m \u001b[38;5;66;03m# )\u001b[39;00m\n\u001b[1;32m 701\u001b[0m \u001b[38;5;66;03m# Here we implement it similarly as np.linspace\u001b[39;00m\n\u001b[1;32m 702\u001b[0m div \u001b[38;5;241m=\u001b[39m periods \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;66;03m# type: ignore[operator]\u001b[39;00m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/generator_utils.py:216\u001b[0m, in \u001b[0;36mgenerate_irregular_range\u001b[0;34m(start, end, periods, offset)\u001b[0m\n\u001b[1;32m 213\u001b[0m periods \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 215\u001b[0m num_offsets \u001b[38;5;241m=\u001b[39m get_active_session()\u001b[38;5;241m.\u001b[39mrange(start\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m, end\u001b[38;5;241m=\u001b[39mperiods, step\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[0;32m--> 216\u001b[0m sf_date_or_time_part \u001b[38;5;241m=\u001b[39m \u001b[43m_offset_name_to_sf_date_or_time_part\u001b[49m\u001b[43m(\u001b[49m\u001b[43moffset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 217\u001b[0m dt_col \u001b[38;5;241m=\u001b[39m builtin(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDATEADD\u001b[39m\u001b[38;5;124m\"\u001b[39m)(\n\u001b[1;32m 218\u001b[0m sf_date_or_time_part,\n\u001b[1;32m 219\u001b[0m offset\u001b[38;5;241m.\u001b[39mn \u001b[38;5;241m*\u001b[39m col(num_offsets\u001b[38;5;241m.\u001b[39mcolumns[\u001b[38;5;241m0\u001b[39m]),\n\u001b[1;32m 220\u001b[0m pandas_lit(start),\n\u001b[1;32m 221\u001b[0m )\n\u001b[1;32m 222\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m offset\u001b[38;5;241m.\u001b[39mname \u001b[38;5;129;01min\u001b[39;00m LAST_DAY:\n\u001b[1;32m 223\u001b[0m \u001b[38;5;66;03m# When last day is required, we need to explicitly call LAST_DAY SQL function to convert DATEADD results to the\u001b[39;00m\n\u001b[1;32m 224\u001b[0m \u001b[38;5;66;03m# last day, e.g., adding one month to \"2/29/2024\" using DATEADD results \"3/29/2024\", which is not the last day\u001b[39;00m\n\u001b[1;32m 225\u001b[0m \u001b[38;5;66;03m# of March. So we need to call LAST_DAY. Also, LAST_DAY only return the date, then we need to reconstruct the\u001b[39;00m\n\u001b[1;32m 226\u001b[0m \u001b[38;5;66;03m# timestamp using timestamp_ntz_from_parts\u001b[39;00m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/generator_utils.py:162\u001b[0m, in \u001b[0;36m_offset_name_to_sf_date_or_time_part\u001b[0;34m(name)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01min\u001b[39;00m OFFSET_NAME_TO_SF_DATE_OR_TIME_PART_MAP:\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m OFFSET_NAME_TO_SF_DATE_OR_TIME_PART_MAP[name]\n\u001b[0;32m--> 162\u001b[0m \u001b[43mErrorMessage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnot_implemented\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 163\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43moffset \u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mname\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m is not implemented in Snowpark pandas API\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 164\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 165\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:163\u001b[0m, in \u001b[0;36mErrorMessage.not_implemented\u001b[0;34m(cls, message)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnot_implemented\u001b[39m(\u001b[38;5;28mcls\u001b[39m, message: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NoReturn: \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 162\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNotImplementedError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(message)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: offset BME is not implemented in Snowpark pandas API" + ] + } + ], + "source": [ + "pd.date_range(start, end, freq=\"BME\")" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "cb8484ed-fbd1-4331-a87a-4382e2eb4a64", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:25.572842Z", + "iopub.status.busy": "2024-08-29T18:28:25.572630Z", + "iopub.status.idle": "2024-08-29T18:28:26.425813Z", + "shell.execute_reply": "2024-08-29T18:28:26.425219Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2011-01-02', '2011-01-09', '2011-01-16', '2011-01-23',\n", + " '2011-01-30', '2011-02-06', '2011-02-13', '2011-02-20',\n", + " '2011-02-27', '2011-03-06', '2011-03-13', '2011-03-20',\n", + " '2011-03-27', '2011-04-03', '2011-04-10', '2011-04-17',\n", + " '2011-04-24', '2011-05-01', '2011-05-08', '2011-05-15',\n", + " '2011-05-22', '2011-05-29', '2011-06-05', '2011-06-12',\n", + " '2011-06-19', '2011-06-26', '2011-07-03', '2011-07-10',\n", + " '2011-07-17', '2011-07-24', '2011-07-31', '2011-08-07',\n", + " '2011-08-14', '2011-08-21', '2011-08-28', '2011-09-04',\n", + " '2011-09-11', '2011-09-18', '2011-09-25', '2011-10-02',\n", + " '2011-10-09', '2011-10-16', '2011-10-23', '2011-10-30',\n", + " '2011-11-06', '2011-11-13', '2011-11-20', '2011-11-27',\n", + " '2011-12-04', '2011-12-11', '2011-12-18', '2011-12-25',\n", + " '2012-01-01'],\n", + " dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 53, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.date_range(start, end, freq=\"W\")" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "ed7a8ede-b4ac-40b7-a9ca-0523b8b2d908", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:26.430597Z", + "iopub.status.busy": "2024-08-29T18:28:26.430209Z", + "iopub.status.idle": "2024-08-29T18:28:26.435240Z", + "shell.execute_reply": "2024-08-29T18:28:26.434720Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2011-12-05', '2011-12-06', '2011-12-07', '2011-12-08',\n", + " '2011-12-09', '2011-12-12', '2011-12-13', '2011-12-14',\n", + " '2011-12-15', '2011-12-16', '2011-12-19', '2011-12-20',\n", + " '2011-12-21', '2011-12-22', '2011-12-23', '2011-12-26',\n", + " '2011-12-27', '2011-12-28', '2011-12-29', '2011-12-30'],\n", + " dtype='datetime64[ns]', freq='B')" + ] + }, + "execution_count": 54, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.bdate_range(end=end, periods=20)" + ] + }, + { + "cell_type": "code", + "execution_count": 55, + "id": "6ce60028-87c2-4d03-aca4-79d74c713b1d", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:26.439189Z", + "iopub.status.busy": "2024-08-29T18:28:26.438659Z", + "iopub.status.idle": "2024-08-29T18:28:26.442626Z", + "shell.execute_reply": "2024-08-29T18:28:26.442241Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2011-01-03', '2011-01-04', '2011-01-05', '2011-01-06',\n", + " '2011-01-07', '2011-01-10', '2011-01-11', '2011-01-12',\n", + " '2011-01-13', '2011-01-14', '2011-01-17', '2011-01-18',\n", + " '2011-01-19', '2011-01-20', '2011-01-21', '2011-01-24',\n", + " '2011-01-25', '2011-01-26', '2011-01-27', '2011-01-28'],\n", + " dtype='datetime64[ns]', freq='B')" + ] + }, + "execution_count": 55, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.bdate_range(start=start, periods=20)" + ] + }, + { + "cell_type": "markdown", + "id": "b540e12a-5c2f-4f61-a074-a6a872680e42", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### Specifying start, end, and periods will generate a range of evenly spaced dates from start to end inclusively, with periods number of elements in the resulting DatetimeIndex:\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 56, + "id": "1470b8ca-270e-4701-bca0-751485a21d3e", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:26.444940Z", + "iopub.status.busy": "2024-08-29T18:28:26.444803Z", + "iopub.status.idle": "2024-08-29T18:28:27.225812Z", + "shell.execute_reply": "2024-08-29T18:28:27.225205Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2018-01-01', '2018-01-02', '2018-01-03', '2018-01-04',\n", + " '2018-01-05'],\n", + " dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 56, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.date_range(\"2018-01-01\", \"2018-01-05\", periods=5)" + ] + }, + { + "cell_type": "code", + "execution_count": 57, + "id": "2a0022ee-ba87-4c2b-8c41-16d9271cebe7", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:27.229949Z", + "iopub.status.busy": "2024-08-29T18:28:27.229529Z", + "iopub.status.idle": "2024-08-29T18:28:27.994795Z", + "shell.execute_reply": "2024-08-29T18:28:27.994112Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2018-01-01 00:00:00', '2018-01-01 10:40:00',\n", + " '2018-01-01 21:20:00', '2018-01-02 08:00:00',\n", + " '2018-01-02 18:40:00', '2018-01-03 05:20:00',\n", + " '2018-01-03 16:00:00', '2018-01-04 02:40:00',\n", + " '2018-01-04 13:20:00', '2018-01-05 00:00:00'],\n", + " dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 57, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.date_range(\"2018-01-01\", \"2018-01-05\", periods=10)" + ] + }, + { + "cell_type": "markdown", + "id": "1960e1c1-1488-45af-9ac8-ba6ce9fe5d4e", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Custom frequency ranges" + ] + }, + { + "cell_type": "markdown", + "id": "2d4f1cd9-4aad-4c44-98c1-65234836a294", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### bdate_range can also generate a range of custom frequency dates by using the weekmask and holidays parameters. These parameters will only be used if a custom frequency string is passed.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 58, + "id": "2a322ecb-3c8d-443b-9ad0-a9a3b5ca68d5", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:27.999502Z", + "iopub.status.busy": "2024-08-29T18:28:27.999188Z", + "iopub.status.idle": "2024-08-29T18:28:28.007422Z", + "shell.execute_reply": "2024-08-29T18:28:28.006986Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2011-01-03', '2011-01-07', '2011-01-10', '2011-01-12',\n", + " '2011-01-14', '2011-01-17', '2011-01-19', '2011-01-21',\n", + " '2011-01-24', '2011-01-26',\n", + " ...\n", + " '2011-12-09', '2011-12-12', '2011-12-14', '2011-12-16',\n", + " '2011-12-19', '2011-12-21', '2011-12-23', '2011-12-26',\n", + " '2011-12-28', '2011-12-30'],\n", + " dtype='datetime64[ns]', length=154, freq='C')" + ] + }, + "execution_count": 58, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "weekmask = \"Mon Wed Fri\"\n", + "\n", + "holidays = [datetime.datetime(2011, 1, 5), datetime.datetime(2011, 3, 14)]\n", + "\n", + "pd.bdate_range(start, end, freq=\"C\", weekmask=weekmask, holidays=holidays)" + ] + }, + { + "cell_type": "markdown", + "id": "efb29c5a-0e24-4e0f-b535-68905f6739a4", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# Indexing" + ] + }, + { + "cell_type": "code", + "execution_count": 59, + "id": "cc530503-75c4-4aed-b8c4-b589609dc868", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:28.011096Z", + "iopub.status.busy": "2024-08-29T18:28:28.010874Z", + "iopub.status.idle": "2024-08-29T18:28:28.064450Z", + "shell.execute_reply": "2024-08-29T18:28:28.064109Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "offset BME is not implemented in Snowpark pandas API", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[59], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m rng \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdate_range\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mend\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mBME\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3\u001b[0m ts \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mSeries(np\u001b[38;5;241m.\u001b[39mrandom\u001b[38;5;241m.\u001b[39mrandn(\u001b[38;5;28mlen\u001b[39m(rng)), index\u001b[38;5;241m=\u001b[39mrng)\n\u001b[1;32m 5\u001b[0m ts\u001b[38;5;241m.\u001b[39mindex\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:454\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_standalone_function_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 447\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 448\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 449\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 452\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 453\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 454\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 455\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 456\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 457\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 458\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 459\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/general.py:2405\u001b[0m, in \u001b[0;36mdate_range\u001b[0;34m(start, end, periods, freq, tz, normalize, name, inclusive, **kwargs)\u001b[0m\n\u001b[1;32m 2401\u001b[0m \u001b[38;5;66;03m# If a timezone is not explicitly given via `tz`, see if one can be inferred from the `start` and `end` endpoints.\u001b[39;00m\n\u001b[1;32m 2402\u001b[0m \u001b[38;5;66;03m# If more than one of these inputs provides a timezone, require that they all agree.\u001b[39;00m\n\u001b[1;32m 2403\u001b[0m tz \u001b[38;5;241m=\u001b[39m _infer_tz_from_endpoints(start, end, tz)\n\u001b[0;32m-> 2405\u001b[0m qc \u001b[38;5;241m=\u001b[39m \u001b[43mSnowflakeQueryCompiler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_date_range\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2406\u001b[0m \u001b[43m \u001b[49m\u001b[43mstart\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2407\u001b[0m \u001b[43m \u001b[49m\u001b[43mend\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mend\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2408\u001b[0m \u001b[43m \u001b[49m\u001b[43mperiods\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2409\u001b[0m \u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfreq\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2410\u001b[0m \u001b[43m \u001b[49m\u001b[43mtz\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtz\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2411\u001b[0m \u001b[43m \u001b[49m\u001b[43mleft_inclusive\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mleft_inclusive\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2412\u001b[0m \u001b[43m \u001b[49m\u001b[43mright_inclusive\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mright_inclusive\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2413\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2414\u001b[0m \u001b[38;5;66;03m# Set date range as index column.\u001b[39;00m\n\u001b[1;32m 2415\u001b[0m qc \u001b[38;5;241m=\u001b[39m qc\u001b[38;5;241m.\u001b[39mset_index_from_columns(qc\u001b[38;5;241m.\u001b[39mcolumns\u001b[38;5;241m.\u001b[39mtolist(), include_index\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/modin/logging/logger_decorator.py:125\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;124;03mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[1;32m 112\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124;03mAny\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m LogMode\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 127\u001b[0m logger \u001b[38;5;241m=\u001b[39m get_logger()\n\u001b[1;32m 128\u001b[0m logger\u001b[38;5;241m.\u001b[39mlog(log_level, start_line)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/compiler/snowflake_query_compiler.py:691\u001b[0m, in \u001b[0;36mSnowflakeQueryCompiler.from_date_range\u001b[0;34m(cls, start, end, periods, freq, tz, left_inclusive, right_inclusive)\u001b[0m\n\u001b[1;32m 689\u001b[0m dt_values \u001b[38;5;241m=\u001b[39m ns_values\u001b[38;5;241m.\u001b[39mseries_to_datetime()\n\u001b[1;32m 690\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 691\u001b[0m dt_values \u001b[38;5;241m=\u001b[39m \u001b[43mgenerator_utils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate_irregular_range\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 692\u001b[0m \u001b[43m \u001b[49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mend\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\n\u001b[1;32m 693\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 694\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 695\u001b[0m \u001b[38;5;66;03m# Create a linearly spaced date_range in local time\u001b[39;00m\n\u001b[1;32m 696\u001b[0m \u001b[38;5;66;03m# This is the original pandas source code:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 700\u001b[0m \u001b[38;5;66;03m# )\u001b[39;00m\n\u001b[1;32m 701\u001b[0m \u001b[38;5;66;03m# Here we implement it similarly as np.linspace\u001b[39;00m\n\u001b[1;32m 702\u001b[0m div \u001b[38;5;241m=\u001b[39m periods \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;66;03m# type: ignore[operator]\u001b[39;00m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/generator_utils.py:216\u001b[0m, in \u001b[0;36mgenerate_irregular_range\u001b[0;34m(start, end, periods, offset)\u001b[0m\n\u001b[1;32m 213\u001b[0m periods \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 215\u001b[0m num_offsets \u001b[38;5;241m=\u001b[39m get_active_session()\u001b[38;5;241m.\u001b[39mrange(start\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m, end\u001b[38;5;241m=\u001b[39mperiods, step\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[0;32m--> 216\u001b[0m sf_date_or_time_part \u001b[38;5;241m=\u001b[39m \u001b[43m_offset_name_to_sf_date_or_time_part\u001b[49m\u001b[43m(\u001b[49m\u001b[43moffset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 217\u001b[0m dt_col \u001b[38;5;241m=\u001b[39m builtin(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDATEADD\u001b[39m\u001b[38;5;124m\"\u001b[39m)(\n\u001b[1;32m 218\u001b[0m sf_date_or_time_part,\n\u001b[1;32m 219\u001b[0m offset\u001b[38;5;241m.\u001b[39mn \u001b[38;5;241m*\u001b[39m col(num_offsets\u001b[38;5;241m.\u001b[39mcolumns[\u001b[38;5;241m0\u001b[39m]),\n\u001b[1;32m 220\u001b[0m pandas_lit(start),\n\u001b[1;32m 221\u001b[0m )\n\u001b[1;32m 222\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m offset\u001b[38;5;241m.\u001b[39mname \u001b[38;5;129;01min\u001b[39;00m LAST_DAY:\n\u001b[1;32m 223\u001b[0m \u001b[38;5;66;03m# When last day is required, we need to explicitly call LAST_DAY SQL function to convert DATEADD results to the\u001b[39;00m\n\u001b[1;32m 224\u001b[0m \u001b[38;5;66;03m# last day, e.g., adding one month to \"2/29/2024\" using DATEADD results \"3/29/2024\", which is not the last day\u001b[39;00m\n\u001b[1;32m 225\u001b[0m \u001b[38;5;66;03m# of March. So we need to call LAST_DAY. Also, LAST_DAY only return the date, then we need to reconstruct the\u001b[39;00m\n\u001b[1;32m 226\u001b[0m \u001b[38;5;66;03m# timestamp using timestamp_ntz_from_parts\u001b[39;00m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/generator_utils.py:162\u001b[0m, in \u001b[0;36m_offset_name_to_sf_date_or_time_part\u001b[0;34m(name)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01min\u001b[39;00m OFFSET_NAME_TO_SF_DATE_OR_TIME_PART_MAP:\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m OFFSET_NAME_TO_SF_DATE_OR_TIME_PART_MAP[name]\n\u001b[0;32m--> 162\u001b[0m \u001b[43mErrorMessage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnot_implemented\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 163\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43moffset \u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mname\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m is not implemented in Snowpark pandas API\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 164\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 165\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:163\u001b[0m, in \u001b[0;36mErrorMessage.not_implemented\u001b[0;34m(cls, message)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnot_implemented\u001b[39m(\u001b[38;5;28mcls\u001b[39m, message: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NoReturn: \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 162\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNotImplementedError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(message)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: offset BME is not implemented in Snowpark pandas API" + ] + } + ], + "source": [ + "rng = pd.date_range(start, end, freq=\"BME\")\n", + "\n", + "ts = pd.Series(np.random.randn(len(rng)), index=rng)\n", + "\n", + "ts.index" + ] + }, + { + "cell_type": "code", + "execution_count": 60, + "id": "4e5da203-33d9-4c93-a14e-2d89a2510cf9", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:28.077196Z", + "iopub.status.busy": "2024-08-29T18:28:28.077048Z", + "iopub.status.idle": "2024-08-29T18:28:30.011926Z", + "shell.execute_reply": "2024-08-29T18:28:30.011073Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-30',\n", + " '2011-05-31', '2011-06-30', '2011-07-31', '2011-08-31',\n", + " '2011-09-30', '2011-10-31', '2011-11-30', '2011-12-31'],\n", + " dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 60, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rng = pd.date_range(start, end, freq=\"ME\")\n", + "\n", + "ts = pd.Series(np.random.randn(len(rng)), index=rng)\n", + "\n", + "ts.index" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "id": "fd70b5db-c29c-44dd-9dbf-860dd4099ef8", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:30.017451Z", + "iopub.status.busy": "2024-08-29T18:28:30.017117Z", + "iopub.status.idle": "2024-08-29T18:28:30.469874Z", + "shell.execute_reply": "2024-08-29T18:28:30.468817Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2011-01-31', '2011-02-28', '2011-03-31', '2011-04-30',\n", + " '2011-05-31'],\n", + " dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 61, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts[:5].index" + ] + }, + { + "cell_type": "code", + "execution_count": 62, + "id": "5f1a58ce-ca6e-4cfd-8956-ec4910a9f862", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:30.480081Z", + "iopub.status.busy": "2024-08-29T18:28:30.479667Z", + "iopub.status.idle": "2024-08-29T18:28:30.955679Z", + "shell.execute_reply": "2024-08-29T18:28:30.954922Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "DatetimeIndex(['2011-01-31', '2011-03-31', '2011-05-31', '2011-07-31',\n", + " '2011-09-30', '2011-11-30'],\n", + " dtype='datetime64[ns]', freq=None)" + ] + }, + "execution_count": 62, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts[::2].index" + ] + }, + { + "cell_type": "markdown", + "id": "4e303f4f-010b-447e-9c0c-ade4b3f0d250", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### To provide convenience for accessing longer time series, you can also pass in the year or year and month as strings:" + ] + }, + { + "cell_type": "code", + "execution_count": 63, + "id": "93ca9d24-72e0-46ef-b844-ae04c53ffea4", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:30.960911Z", + "iopub.status.busy": "2024-08-29T18:28:30.960556Z", + "iopub.status.idle": "2024-08-29T18:28:31.634564Z", + "shell.execute_reply": "2024-08-29T18:28:31.633577Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2011-01-31 -0.801104\n", + "2011-02-28 -0.043968\n", + "2011-03-31 -0.019943\n", + "2011-04-30 0.208515\n", + "2011-05-31 -0.345150\n", + "2011-06-30 -0.208090\n", + "2011-07-31 0.171058\n", + "2011-08-31 0.035633\n", + "2011-09-30 -0.504994\n", + "2011-10-31 -1.561976\n", + "2011-11-30 -1.336325\n", + "2011-12-31 0.808046\n", + "Freq: None, dtype: float64" + ] + }, + "execution_count": 63, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts[\"2011\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 64, + "id": "b6a434c7-7865-45d6-86ba-2afeef7216c2", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:31.640453Z", + "iopub.status.busy": "2024-08-29T18:28:31.640060Z", + "iopub.status.idle": "2024-08-29T18:28:32.358670Z", + "shell.execute_reply": "2024-08-29T18:28:32.357931Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2011-06-30 -0.20809\n", + "Freq: None, dtype: float64" + ] + }, + "execution_count": 64, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts[\"2011-6\"]" + ] + }, + { + "cell_type": "markdown", + "id": "885cf000-838e-4287-9870-2470afcb7fc8", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### This type of slicing will work on a DataFrame with a DatetimeIndex as well. Since the partial string selection is a form of label slicing, the endpoints will be included. This would include matching times on an included date:" + ] + }, + { + "cell_type": "code", + "execution_count": 65, + "id": "3254e5cd-cc94-479a-9c30-b679de04b870", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:32.363754Z", + "iopub.status.busy": "2024-08-29T18:28:32.363488Z", + "iopub.status.idle": "2024-08-29T18:28:43.477471Z", + "shell.execute_reply": "2024-08-29T18:28:43.476257Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A
2013-01-01 00:00:001.764052
2013-01-01 00:01:000.400157
2013-01-01 00:02:000.978738
2013-01-01 00:03:002.240893
2013-01-01 00:04:001.867558
......
2013-03-11 10:35:00-0.337715
2013-03-11 10:36:00-2.028548
2013-03-11 10:37:000.726182
2013-03-11 10:38:00-1.167831
2013-03-11 10:39:00-1.285208
\n", + "

100000 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " A\n", + "2013-01-01 00:00:00 1.764052\n", + "2013-01-01 00:01:00 0.400157\n", + "2013-01-01 00:02:00 0.978738\n", + "2013-01-01 00:03:00 2.240893\n", + "2013-01-01 00:04:00 1.867558\n", + "... ...\n", + "2013-03-11 10:35:00 -0.337715\n", + "2013-03-11 10:36:00 -2.028548\n", + "2013-03-11 10:37:00 0.726182\n", + "2013-03-11 10:38:00 -1.167831\n", + "2013-03-11 10:39:00 -1.285208\n", + "\n", + "[100000 rows x 1 columns]" + ] + }, + "execution_count": 65, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "np.random.seed(0)\n", + "\n", + "dft = pd.DataFrame(\n", + " np.random.randn(100000, 1),\n", + " columns=[\"A\"],\n", + " index=pd.date_range(\"20130101\", periods=100000, freq=\"min\"),\n", + ")\n", + "\n", + "\n", + "dft" + ] + }, + { + "cell_type": "code", + "execution_count": 66, + "id": "4aa1a291-f13e-4b35-a73b-333411df51de", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:43.484992Z", + "iopub.status.busy": "2024-08-29T18:28:43.484392Z", + "iopub.status.idle": "2024-08-29T18:28:51.498896Z", + "shell.execute_reply": "2024-08-29T18:28:51.497955Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A
2013-01-01 00:00:001.764052
2013-01-01 00:01:000.400157
2013-01-01 00:02:000.978738
2013-01-01 00:03:002.240893
2013-01-01 00:04:001.867558
......
2013-03-11 10:35:00-0.337715
2013-03-11 10:36:00-2.028548
2013-03-11 10:37:000.726182
2013-03-11 10:38:00-1.167831
2013-03-11 10:39:00-1.285208
\n", + "

100000 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " A\n", + "2013-01-01 00:00:00 1.764052\n", + "2013-01-01 00:01:00 0.400157\n", + "2013-01-01 00:02:00 0.978738\n", + "2013-01-01 00:03:00 2.240893\n", + "2013-01-01 00:04:00 1.867558\n", + "... ...\n", + "2013-03-11 10:35:00 -0.337715\n", + "2013-03-11 10:36:00 -2.028548\n", + "2013-03-11 10:37:00 0.726182\n", + "2013-03-11 10:38:00 -1.167831\n", + "2013-03-11 10:39:00 -1.285208\n", + "\n", + "[100000 rows x 1 columns]" + ] + }, + "execution_count": 66, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dft.loc[\"2013\"]" + ] + }, + { + "cell_type": "markdown", + "id": "510776d8-1c0f-4c19-a8eb-bf3f7eb6d939", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### This starts on the very first time in the month, and includes the last date and time for the month:" + ] + }, + { + "cell_type": "code", + "execution_count": 67, + "id": "73ad4bae-beb3-4933-8a23-b66471bd2128", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:51.512374Z", + "iopub.status.busy": "2024-08-29T18:28:51.511957Z", + "iopub.status.idle": "2024-08-29T18:28:59.173404Z", + "shell.execute_reply": "2024-08-29T18:28:59.172750Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A
2013-01-01 00:00:001.764052
2013-01-01 00:01:000.400157
2013-01-01 00:02:000.978738
2013-01-01 00:03:002.240893
2013-01-01 00:04:001.867558
......
2013-02-28 23:55:00-3.284701
2013-02-28 23:56:000.475275
2013-02-28 23:57:000.501877
2013-02-28 23:58:000.222138
2013-02-28 23:59:000.717464
\n", + "

84960 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " A\n", + "2013-01-01 00:00:00 1.764052\n", + "2013-01-01 00:01:00 0.400157\n", + "2013-01-01 00:02:00 0.978738\n", + "2013-01-01 00:03:00 2.240893\n", + "2013-01-01 00:04:00 1.867558\n", + "... ...\n", + "2013-02-28 23:55:00 -3.284701\n", + "2013-02-28 23:56:00 0.475275\n", + "2013-02-28 23:57:00 0.501877\n", + "2013-02-28 23:58:00 0.222138\n", + "2013-02-28 23:59:00 0.717464\n", + "\n", + "[84960 rows x 1 columns]" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dft[\"2013-1\":\"2013-2\"]" + ] + }, + { + "cell_type": "markdown", + "id": "d9dbd8b5-97a1-4458-9efe-69abc1000805", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### This specifies a stop time that includes all of the times on the last day:" + ] + }, + { + "cell_type": "code", + "execution_count": 68, + "id": "7541bba4-f71d-49d5-8901-c7882ceb04f0", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:28:59.178222Z", + "iopub.status.busy": "2024-08-29T18:28:59.177954Z", + "iopub.status.idle": "2024-08-29T18:29:06.843081Z", + "shell.execute_reply": "2024-08-29T18:29:06.839641Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A
2013-01-01 00:00:001.764052
2013-01-01 00:01:000.400157
2013-01-01 00:02:000.978738
2013-01-01 00:03:002.240893
2013-01-01 00:04:001.867558
......
2013-02-28 23:55:00-3.284701
2013-02-28 23:56:000.475275
2013-02-28 23:57:000.501877
2013-02-28 23:58:000.222138
2013-02-28 23:59:000.717464
\n", + "

84960 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " A\n", + "2013-01-01 00:00:00 1.764052\n", + "2013-01-01 00:01:00 0.400157\n", + "2013-01-01 00:02:00 0.978738\n", + "2013-01-01 00:03:00 2.240893\n", + "2013-01-01 00:04:00 1.867558\n", + "... ...\n", + "2013-02-28 23:55:00 -3.284701\n", + "2013-02-28 23:56:00 0.475275\n", + "2013-02-28 23:57:00 0.501877\n", + "2013-02-28 23:58:00 0.222138\n", + "2013-02-28 23:59:00 0.717464\n", + "\n", + "[84960 rows x 1 columns]" + ] + }, + "execution_count": 68, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dft[\"2013-1\":\"2013-2-28\"]" + ] + }, + { + "cell_type": "markdown", + "id": "2b90d0fd-8479-4741-b015-d8e8219c6e2c", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### This specifies an exact stop time (and is not the same as the above):" + ] + }, + { + "cell_type": "code", + "execution_count": 69, + "id": "04deeb28-36e8-4c35-904a-02d71a9abe7c", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:06.854901Z", + "iopub.status.busy": "2024-08-29T18:29:06.854475Z", + "iopub.status.idle": "2024-08-29T18:29:15.006789Z", + "shell.execute_reply": "2024-08-29T18:29:15.005602Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A
2013-01-01 00:00:001.764052
2013-01-01 00:01:000.400157
2013-01-01 00:02:000.978738
2013-01-01 00:03:002.240893
2013-01-01 00:04:001.867558
......
2013-02-27 23:56:00-0.036098
2013-02-27 23:57:00-1.679458
2013-02-27 23:58:000.443969
2013-02-27 23:59:001.390478
2013-02-28 00:00:000.569440
\n", + "

83521 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " A\n", + "2013-01-01 00:00:00 1.764052\n", + "2013-01-01 00:01:00 0.400157\n", + "2013-01-01 00:02:00 0.978738\n", + "2013-01-01 00:03:00 2.240893\n", + "2013-01-01 00:04:00 1.867558\n", + "... ...\n", + "2013-02-27 23:56:00 -0.036098\n", + "2013-02-27 23:57:00 -1.679458\n", + "2013-02-27 23:58:00 0.443969\n", + "2013-02-27 23:59:00 1.390478\n", + "2013-02-28 00:00:00 0.569440\n", + "\n", + "[83521 rows x 1 columns]" + ] + }, + "execution_count": 69, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dft[\"2013-1\":\"2013-2-28 00:00:00\"]" + ] + }, + { + "cell_type": "markdown", + "id": "f17d1737-ded7-4b19-8e20-718c80872edb", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### We are stopping on the included end-point as it is part of the index:" + ] + }, + { + "cell_type": "code", + "execution_count": 70, + "id": "445ed641-74d9-4026-ad94-3172565e7db2", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:15.015279Z", + "iopub.status.busy": "2024-08-29T18:29:15.014811Z", + "iopub.status.idle": "2024-08-29T18:29:22.946298Z", + "shell.execute_reply": "2024-08-29T18:29:22.945053Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A
2013-01-15 00:00:00-1.195459
2013-01-15 00:01:001.543360
2013-01-15 00:02:000.237914
2013-01-15 00:03:000.767214
2013-01-15 00:04:00-2.109814
......
2013-01-15 12:26:000.817564
2013-01-15 12:27:00-0.649760
2013-01-15 12:28:001.245159
2013-01-15 12:29:000.300473
2013-01-15 12:30:001.167551
\n", + "

751 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " A\n", + "2013-01-15 00:00:00 -1.195459\n", + "2013-01-15 00:01:00 1.543360\n", + "2013-01-15 00:02:00 0.237914\n", + "2013-01-15 00:03:00 0.767214\n", + "2013-01-15 00:04:00 -2.109814\n", + "... ...\n", + "2013-01-15 12:26:00 0.817564\n", + "2013-01-15 12:27:00 -0.649760\n", + "2013-01-15 12:28:00 1.245159\n", + "2013-01-15 12:29:00 0.300473\n", + "2013-01-15 12:30:00 1.167551\n", + "\n", + "[751 rows x 1 columns]" + ] + }, + "execution_count": 70, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dft[\"2013-1-15\":\"2013-1-15 12:30:00\"]" + ] + }, + { + "cell_type": "markdown", + "id": "d87d800b-29fb-4b93-a28f-0de738a3ae07", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### DatetimeIndex partial string indexing also works on a DataFrame with a MultiIndex:" + ] + }, + { + "cell_type": "code", + "execution_count": 71, + "id": "e8c3388b-374a-44a8-a060-b5531589bbf6", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:22.954586Z", + "iopub.status.busy": "2024-08-29T18:29:22.954189Z", + "iopub.status.idle": "2024-08-29T18:29:24.722043Z", + "shell.execute_reply": "2024-08-29T18:29:24.721177Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A
2013-01-01 00:00:00a-0.483797
b1.288057
2013-01-01 12:00:00a-0.129879
b-0.198078
2013-01-02 00:00:00a-0.334488
b-0.391443
2013-01-02 12:00:00a-0.612406
b-0.676524
2013-01-03 00:00:00a1.327230
b-0.448695
2013-01-03 12:00:00a-0.316407
b0.030831
2013-01-04 00:00:00a-0.313357
b-0.173259
2013-01-04 12:00:00a-0.327369
b0.944368
2013-01-05 00:00:00a1.122017
b0.112339
2013-01-05 12:00:00a1.372340
b2.062562
\n", + "
" + ], + "text/plain": [ + " A\n", + "2013-01-01 00:00:00 a -0.483797\n", + " b 1.288057\n", + "2013-01-01 12:00:00 a -0.129879\n", + " b -0.198078\n", + "2013-01-02 00:00:00 a -0.334488\n", + " b -0.391443\n", + "2013-01-02 12:00:00 a -0.612406\n", + " b -0.676524\n", + "2013-01-03 00:00:00 a 1.327230\n", + " b -0.448695\n", + "2013-01-03 12:00:00 a -0.316407\n", + " b 0.030831\n", + "2013-01-04 00:00:00 a -0.313357\n", + " b -0.173259\n", + "2013-01-04 12:00:00 a -0.327369\n", + " b 0.944368\n", + "2013-01-05 00:00:00 a 1.122017\n", + " b 0.112339\n", + "2013-01-05 12:00:00 a 1.372340\n", + " b 2.062562" + ] + }, + "execution_count": 71, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dft2 = pd.DataFrame(\n", + " np.random.randn(20, 1),\n", + " columns=[\"A\"],\n", + " index=pd.MultiIndex.from_product(\n", + " [pd.date_range(\"20130101\", periods=10, freq=\"12h\"), [\"a\", \"b\"]]\n", + " ),\n", + ")\n", + "\n", + "\n", + "dft2" + ] + }, + { + "cell_type": "code", + "execution_count": 72, + "id": "cf34669d-75ef-4baf-89e0-c00b284fb23d", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:24.728761Z", + "iopub.status.busy": "2024-08-29T18:29:24.728148Z", + "iopub.status.idle": "2024-08-29T18:29:25.903263Z", + "shell.execute_reply": "2024-08-29T18:29:25.902375Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A
2013-01-05 00:00:00a1.122017
b0.112339
2013-01-05 12:00:00a1.372340
b2.062562
\n", + "
" + ], + "text/plain": [ + " A\n", + "2013-01-05 00:00:00 a 1.122017\n", + " b 0.112339\n", + "2013-01-05 12:00:00 a 1.372340\n", + " b 2.062562" + ] + }, + "execution_count": 72, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dft2.loc[\"2013-01-05\"]" + ] + }, + { + "cell_type": "code", + "execution_count": 73, + "id": "4fe86ab1-49df-4661-a653-b744cf985345", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:25.908395Z", + "iopub.status.busy": "2024-08-29T18:29:25.908105Z", + "iopub.status.idle": "2024-08-29T18:29:25.956564Z", + "shell.execute_reply": "2024-08-29T18:29:25.956143Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "Snowpark pandas does not yet support the method DataFrame.swaplevel", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[73], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m idx \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mIndexSlice\n\u001b[0;32m----> 3\u001b[0m dft2 \u001b[38;5;241m=\u001b[39m \u001b[43mdft2\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mswaplevel\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39msort_index()\n\u001b[1;32m 5\u001b[0m dft2\u001b[38;5;241m.\u001b[39mloc[idx[:, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m2013-01-05\u001b[39m\u001b[38;5;124m\"\u001b[39m], :]\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:414\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_method_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 409\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 412\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 413\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 414\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 415\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_method_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_method_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:117\u001b[0m, in \u001b[0;36m_make_not_implemented_decorator..not_implemented_decorator..make_error_raiser..raise_not_implemented_method_error\u001b[0;34m(cls_or_self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 116\u001b[0m non_null_attribute_prefix \u001b[38;5;241m=\u001b[39m attribute_prefix\n\u001b[0;32m--> 117\u001b[0m \u001b[43mErrorMessage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnot_implemented\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 118\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessage\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43m_snowpark_pandas_does_not_yet_support\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m method \u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mnon_null_attribute_prefix\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m.\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mname\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 119\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:163\u001b[0m, in \u001b[0;36mErrorMessage.not_implemented\u001b[0;34m(cls, message)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnot_implemented\u001b[39m(\u001b[38;5;28mcls\u001b[39m, message: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NoReturn: \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 162\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNotImplementedError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(message)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: Snowpark pandas does not yet support the method DataFrame.swaplevel" + ] + } + ], + "source": [ + "idx = pd.IndexSlice\n", + "\n", + "dft2 = dft2.swaplevel(0, 1).sort_index()\n", + "\n", + "dft2.loc[idx[:, \"2013-01-05\"], :]" + ] + }, + { + "cell_type": "markdown", + "id": "0596aa8e-1aa3-4854-91f0-2f512fd2d443", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### Slicing with string indexing also honors UTC offset." + ] + }, + { + "cell_type": "markdown", + "id": "ad1362d9-364e-443a-b1fe-0029840d7d61", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Slice vs. exact match" + ] + }, + { + "cell_type": "markdown", + "id": "80b2fc81-d35b-4ed3-80af-baa52d5c288e", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### The same string used as an indexing parameter can be treated either as a slice or as an exact match depending on the resolution of the index. If the string is less accurate than the index, it will be treated as a slice, otherwise as an exact match.\n", + "\n", + "Consider a Series object with a minute resolution index:" + ] + }, + { + "cell_type": "code", + "execution_count": 74, + "id": "cfaa9748-de47-4992-9b34-14da93db7b14", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:25.972268Z", + "iopub.status.busy": "2024-08-29T18:29:25.972118Z", + "iopub.status.idle": "2024-08-29T18:29:26.758021Z", + "shell.execute_reply": "2024-08-29T18:29:26.757618Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "Index.resolution is not yet implemented", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/extensions/index.py:250\u001b[0m, in \u001b[0;36mIndex.__getattr__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 250\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mobject\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__getattribute__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkey\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 251\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n", + "\u001b[0;31mAttributeError\u001b[0m: 'DatetimeIndex' object has no attribute 'resolution'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[74], line 9\u001b[0m\n\u001b[1;32m 1\u001b[0m series_minute \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mSeries(\n\u001b[1;32m 2\u001b[0m [\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m2\u001b[39m, \u001b[38;5;241m3\u001b[39m],\n\u001b[1;32m 3\u001b[0m pd\u001b[38;5;241m.\u001b[39mDatetimeIndex(\n\u001b[1;32m 4\u001b[0m [\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m2011-12-31 23:59:00\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m2012-01-01 00:00:00\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m2012-01-01 00:02:00\u001b[39m\u001b[38;5;124m\"\u001b[39m]\n\u001b[1;32m 5\u001b[0m ),\n\u001b[1;32m 6\u001b[0m )\n\u001b[0;32m----> 9\u001b[0m \u001b[43mseries_minute\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mindex\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mresolution\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/extensions/index.py:257\u001b[0m, in \u001b[0;36mIndex.__getattr__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 253\u001b[0m native_index \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_NATIVE_INDEX_TYPE([])\n\u001b[1;32m 254\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(native_index, key):\n\u001b[1;32m 255\u001b[0m \u001b[38;5;66;03m# Any methods that not supported by the current Index.py but exist in a\u001b[39;00m\n\u001b[1;32m 256\u001b[0m \u001b[38;5;66;03m# native pandas index object should raise a not implemented error for now.\u001b[39;00m\n\u001b[0;32m--> 257\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[43mErrorMessage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnot_implemented\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 258\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mIndex.\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mkey\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m is not yet implemented\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 259\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 260\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m err\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:163\u001b[0m, in \u001b[0;36mErrorMessage.not_implemented\u001b[0;34m(cls, message)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnot_implemented\u001b[39m(\u001b[38;5;28mcls\u001b[39m, message: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NoReturn: \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 162\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNotImplementedError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(message)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: Index.resolution is not yet implemented" + ] + } + ], + "source": [ + "series_minute = pd.Series(\n", + " [1, 2, 3],\n", + " pd.DatetimeIndex(\n", + " [\"2011-12-31 23:59:00\", \"2012-01-01 00:00:00\", \"2012-01-01 00:02:00\"]\n", + " ),\n", + ")\n", + "\n", + "\n", + "series_minute.index.resolution" + ] + }, + { + "cell_type": "markdown", + "id": "424987b9-88eb-4e81-b9b4-e4e188fabda6", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "##### A timestamp string less accurate than a minute gives a Series object." + ] + }, + { + "cell_type": "code", + "execution_count": 75, + "id": "b8997514-bb79-4da7-bcbb-e0262d04412f", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:26.760390Z", + "iopub.status.busy": "2024-08-29T18:29:26.760237Z", + "iopub.status.idle": "2024-08-29T18:29:27.304058Z", + "shell.execute_reply": "2024-08-29T18:29:27.302805Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2011-12-31 23:59:00 1\n", + "Freq: None, dtype: int64" + ] + }, + "execution_count": 75, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "series_minute[\"2011-12-31 23\"] # we return series instead" + ] + }, + { + "cell_type": "markdown", + "id": "971505bf-eed4-4fdc-a764-4572b25b353b", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Exact indexing" + ] + }, + { + "cell_type": "code", + "execution_count": 76, + "id": "1a24da8a-4736-4120-bb69-5380b6b59f53", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:27.309107Z", + "iopub.status.busy": "2024-08-29T18:29:27.308485Z", + "iopub.status.idle": "2024-08-29T18:29:35.024025Z", + "shell.execute_reply": "2024-08-29T18:29:35.023023Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A
2013-01-01 00:00:001.764052
2013-01-01 00:01:000.400157
2013-01-01 00:02:000.978738
2013-01-01 00:03:002.240893
2013-01-01 00:04:001.867558
......
2013-02-27 23:56:00-0.036098
2013-02-27 23:57:00-1.679458
2013-02-27 23:58:000.443969
2013-02-27 23:59:001.390478
2013-02-28 00:00:000.569440
\n", + "

83521 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " A\n", + "2013-01-01 00:00:00 1.764052\n", + "2013-01-01 00:01:00 0.400157\n", + "2013-01-01 00:02:00 0.978738\n", + "2013-01-01 00:03:00 2.240893\n", + "2013-01-01 00:04:00 1.867558\n", + "... ...\n", + "2013-02-27 23:56:00 -0.036098\n", + "2013-02-27 23:57:00 -1.679458\n", + "2013-02-27 23:58:00 0.443969\n", + "2013-02-27 23:59:00 1.390478\n", + "2013-02-28 00:00:00 0.569440\n", + "\n", + "[83521 rows x 1 columns]" + ] + }, + "execution_count": 76, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dft[datetime.datetime(2013, 1, 1): datetime.datetime(2013, 2, 28)]" + ] + }, + { + "cell_type": "code", + "execution_count": 77, + "id": "d62bee69-00d5-4fed-bf7c-5f6aee22eade", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:35.032895Z", + "iopub.status.busy": "2024-08-29T18:29:35.032498Z", + "iopub.status.idle": "2024-08-29T18:29:43.136491Z", + "shell.execute_reply": "2024-08-29T18:29:43.134875Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
A
2013-01-01 10:12:000.605120
2013-01-01 10:13:000.895556
2013-01-01 10:14:00-0.131909
2013-01-01 10:15:000.404762
2013-01-01 10:16:000.223844
......
2013-02-28 10:08:000.746108
2013-02-28 10:09:001.754498
2013-02-28 10:10:00-0.622373
2013-02-28 10:11:00-0.449793
2013-02-28 10:12:000.848123
\n", + "

83521 rows × 1 columns

\n", + "
" + ], + "text/plain": [ + " A\n", + "2013-01-01 10:12:00 0.605120\n", + "2013-01-01 10:13:00 0.895556\n", + "2013-01-01 10:14:00 -0.131909\n", + "2013-01-01 10:15:00 0.404762\n", + "2013-01-01 10:16:00 0.223844\n", + "... ...\n", + "2013-02-28 10:08:00 0.746108\n", + "2013-02-28 10:09:00 1.754498\n", + "2013-02-28 10:10:00 -0.622373\n", + "2013-02-28 10:11:00 -0.449793\n", + "2013-02-28 10:12:00 0.848123\n", + "\n", + "[83521 rows x 1 columns]" + ] + }, + "execution_count": 77, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "dft[\n", + " datetime.datetime(2013, 1, 1, 10, 12, 0): datetime.datetime(\n", + " 2013, 2, 28, 10, 12, 0\n", + " )\n", + "]" + ] + }, + { + "cell_type": "markdown", + "id": "0231045c-df35-4892-9069-8819d41a8d55", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Truncating & fancy indexing" + ] + }, + { + "cell_type": "code", + "execution_count": 78, + "id": "62e2459c-ab53-4f7c-aea7-a623717d4f36", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:43.144794Z", + "iopub.status.busy": "2024-08-29T18:29:43.144406Z", + "iopub.status.idle": "2024-08-29T18:29:44.544573Z", + "shell.execute_reply": "2024-08-29T18:29:44.544115Z" + }, + "scrolled": true, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "Snowpark pandas does not yet support the method Series.truncate", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[78], line 5\u001b[0m\n\u001b[1;32m 1\u001b[0m rng2 \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mdate_range(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m2011-01-01\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m2012-01-01\u001b[39m\u001b[38;5;124m\"\u001b[39m, freq\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mW\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 3\u001b[0m ts2 \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mSeries(np\u001b[38;5;241m.\u001b[39mrandom\u001b[38;5;241m.\u001b[39mrandn(\u001b[38;5;28mlen\u001b[39m(rng2)), index\u001b[38;5;241m=\u001b[39mrng2)\n\u001b[0;32m----> 5\u001b[0m \u001b[43mts2\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtruncate\u001b[49m\u001b[43m(\u001b[49m\u001b[43mbefore\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m2011-11\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mafter\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m2011-12\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:414\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_method_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 409\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 412\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 413\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 414\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 415\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_method_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_method_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:117\u001b[0m, in \u001b[0;36m_make_not_implemented_decorator..not_implemented_decorator..make_error_raiser..raise_not_implemented_method_error\u001b[0;34m(cls_or_self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 116\u001b[0m non_null_attribute_prefix \u001b[38;5;241m=\u001b[39m attribute_prefix\n\u001b[0;32m--> 117\u001b[0m \u001b[43mErrorMessage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnot_implemented\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 118\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessage\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43m_snowpark_pandas_does_not_yet_support\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m method \u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mnon_null_attribute_prefix\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m.\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mname\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 119\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:163\u001b[0m, in \u001b[0;36mErrorMessage.not_implemented\u001b[0;34m(cls, message)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnot_implemented\u001b[39m(\u001b[38;5;28mcls\u001b[39m, message: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NoReturn: \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 162\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNotImplementedError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(message)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: Snowpark pandas does not yet support the method Series.truncate" + ] + } + ], + "source": [ + "rng2 = pd.date_range(\"2011-01-01\", \"2012-01-01\", freq=\"W\")\n", + "\n", + "ts2 = pd.Series(np.random.randn(len(rng2)), index=rng2)\n", + "\n", + "ts2.truncate(before=\"2011-11\", after=\"2011-12\")" + ] + }, + { + "cell_type": "code", + "execution_count": 79, + "id": "6d0d2c8b-205f-4a57-b7bd-301c7531b1ad", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:44.551488Z", + "iopub.status.busy": "2024-08-29T18:29:44.551331Z", + "iopub.status.idle": "2024-08-29T18:29:45.214652Z", + "shell.execute_reply": "2024-08-29T18:29:45.213674Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2011-11-06 -0.433416\n", + "2011-11-13 0.773872\n", + "2011-11-20 -0.834212\n", + "2011-11-27 -0.728240\n", + "2011-12-04 0.674975\n", + "2011-12-11 -0.477772\n", + "2011-12-18 1.492301\n", + "2011-12-25 -0.658391\n", + "Freq: None, dtype: float64" + ] + }, + "execution_count": 79, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts2[\"2011-11\":\"2011-12\"]" + ] + }, + { + "cell_type": "markdown", + "id": "362a58c6-68a8-4103-96dd-569752c6d199", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# Time/date components" + ] + }, + { + "cell_type": "code", + "execution_count": 80, + "id": "0a5647ae-a168-4c3e-98a5-381cdd2c61c2", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:45.219857Z", + "iopub.status.busy": "2024-08-29T18:29:45.219477Z", + "iopub.status.idle": "2024-08-29T18:29:45.729887Z", + "shell.execute_reply": "2024-08-29T18:29:45.729413Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "Index.isocalendar is not yet implemented", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/extensions/index.py:250\u001b[0m, in \u001b[0;36mIndex.__getattr__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 249\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 250\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mobject\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__getattribute__\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mkey\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 251\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mAttributeError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m err:\n", + "\u001b[0;31mAttributeError\u001b[0m: 'DatetimeIndex' object has no attribute 'isocalendar'", + "\nDuring handling of the above exception, another exception occurred:\n", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[80], line 3\u001b[0m\n\u001b[1;32m 1\u001b[0m idx \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mdate_range(start\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m2019-12-29\u001b[39m\u001b[38;5;124m\"\u001b[39m, freq\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mD\u001b[39m\u001b[38;5;124m\"\u001b[39m, periods\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m4\u001b[39m)\n\u001b[0;32m----> 3\u001b[0m \u001b[43midx\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43misocalendar\u001b[49m()\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/extensions/index.py:257\u001b[0m, in \u001b[0;36mIndex.__getattr__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 253\u001b[0m native_index \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_NATIVE_INDEX_TYPE([])\n\u001b[1;32m 254\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mhasattr\u001b[39m(native_index, key):\n\u001b[1;32m 255\u001b[0m \u001b[38;5;66;03m# Any methods that not supported by the current Index.py but exist in a\u001b[39;00m\n\u001b[1;32m 256\u001b[0m \u001b[38;5;66;03m# native pandas index object should raise a not implemented error for now.\u001b[39;00m\n\u001b[0;32m--> 257\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[43mErrorMessage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnot_implemented\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 258\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mIndex.\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mkey\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m is not yet implemented\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 259\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 260\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m err\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:163\u001b[0m, in \u001b[0;36mErrorMessage.not_implemented\u001b[0;34m(cls, message)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnot_implemented\u001b[39m(\u001b[38;5;28mcls\u001b[39m, message: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NoReturn: \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 162\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNotImplementedError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(message)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: Index.isocalendar is not yet implemented" + ] + } + ], + "source": [ + "idx = pd.date_range(start=\"2019-12-29\", freq=\"D\", periods=4)\n", + "\n", + "idx.isocalendar()" + ] + }, + { + "cell_type": "code", + "execution_count": 81, + "id": "0c48589b-bcf8-4d43-a1d6-d2df60ff0e0f", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:45.733891Z", + "iopub.status.busy": "2024-08-29T18:29:45.733699Z", + "iopub.status.idle": "2024-08-29T18:29:47.607863Z", + "shell.execute_reply": "2024-08-29T18:29:47.606875Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
yearweekday
2019-12-292019527
2019-12-30202011
2019-12-31202012
2020-01-01202013
\n", + "
" + ], + "text/plain": [ + " year week day\n", + "2019-12-29 2019 52 7\n", + "2019-12-30 2020 1 1\n", + "2019-12-31 2020 1 2\n", + "2020-01-01 2020 1 3" + ] + }, + "execution_count": 81, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "idx.to_series().dt.isocalendar()" + ] + }, + { + "cell_type": "markdown", + "id": "9b5b10c8-e72f-4405-bdeb-1bced14c8edf", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# DateOffset objects" + ] + }, + { + "cell_type": "code", + "execution_count": 82, + "id": "1febbd6a-1b57-4e6a-a48a-3eac565ad61d", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:47.613711Z", + "iopub.status.busy": "2024-08-29T18:29:47.613358Z", + "iopub.status.idle": "2024-08-29T18:29:47.621382Z", + "shell.execute_reply": "2024-08-29T18:29:47.620827Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Timestamp('2016-10-30 23:00:00+0200', tz='Europe/Helsinki')" + ] + }, + "execution_count": 82, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts = pd.Timestamp(\"2016-10-30 00:00:00\", tz=\"Europe/Helsinki\")\n", + "\n", + "ts + pd.Timedelta(days=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 83, + "id": "b8d03fb0-826f-4698-a6d0-f2b63f7d38dc", + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-29T18:29:47.624782Z", + "iopub.status.busy": "2024-08-29T18:29:47.624512Z", + "iopub.status.idle": "2024-08-29T18:29:47.629436Z", + "shell.execute_reply": "2024-08-29T18:29:47.628904Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Timestamp('2016-10-31 00:00:00+0200', tz='Europe/Helsinki')" + ] + }, + "execution_count": 83, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts + pd.DateOffset(days=1)" + ] + }, + { + "cell_type": "markdown", + "id": "7d4c2685-79b1-4262-9c53-e0901b730d36", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# Time Series-related instance methods" + ] + }, + { + "cell_type": "code", + "execution_count": 84, + "id": "7544f420-459f-4320-89f4-a9897ad4daf8", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:47.635533Z", + "iopub.status.busy": "2024-08-29T18:29:47.635144Z", + "iopub.status.idle": "2024-08-29T18:29:48.698763Z", + "shell.execute_reply": "2024-08-29T18:29:48.697631Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2011-01-31 NaN\n", + "2011-02-28 0.0\n", + "2011-03-31 1.0\n", + "2011-04-30 2.0\n", + "2011-05-31 3.0\n", + "Freq: None, dtype: float64" + ] + }, + "execution_count": 84, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ts = pd.Series(range(len(rng)), index=rng)\n", + "\n", + "ts = ts[:5]\n", + "\n", + "ts.shift(1)" + ] + }, + { + "cell_type": "code", + "execution_count": 85, + "id": "ee59ce08-9bd7-4fc2-93e1-55868cb47028", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:48.704904Z", + "iopub.status.busy": "2024-08-29T18:29:48.704508Z", + "iopub.status.idle": "2024-08-29T18:29:48.945774Z", + "shell.execute_reply": "2024-08-29T18:29:48.945391Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "shifting index values not yet supported.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[85], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mts\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshift\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mD\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:414\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_method_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 409\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 412\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 413\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 414\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 415\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_method_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_method_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/series.py:2551\u001b[0m, in \u001b[0;36mSeries.shift\u001b[0;34m(self, periods, freq, axis, fill_value, suffix)\u001b[0m\n\u001b[1;32m 2547\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m axis \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 2548\u001b[0m \u001b[38;5;66;03m# pandas compatible error.\u001b[39;00m\n\u001b[1;32m 2549\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo axis named 1 for object type Series\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 2551\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshift\u001b[49m\u001b[43m(\u001b[49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msuffix\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:414\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_method_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 409\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 412\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 413\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 414\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 415\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_method_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_method_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/base.py:3125\u001b[0m, in \u001b[0;36mBasePandasDataset.shift\u001b[0;34m(self, periods, freq, axis, fill_value, suffix)\u001b[0m\n\u001b[1;32m 3122\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m fill_value \u001b[38;5;241m==\u001b[39m no_default:\n\u001b[1;32m 3123\u001b[0m fill_value \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 3125\u001b[0m new_query_compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_query_compiler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshift\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3126\u001b[0m \u001b[43m \u001b[49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msuffix\u001b[49m\n\u001b[1;32m 3127\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3128\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_create_or_update_from_compiler(new_query_compiler, \u001b[38;5;28;01mFalse\u001b[39;00m)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/modin/logging/logger_decorator.py:125\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;124;03mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[1;32m 112\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124;03mAny\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m LogMode\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 127\u001b[0m logger \u001b[38;5;241m=\u001b[39m get_logger()\n\u001b[1;32m 128\u001b[0m logger\u001b[38;5;241m.\u001b[39mlog(log_level, start_line)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/compiler/snowflake_query_compiler.py:1672\u001b[0m, in \u001b[0;36mSnowflakeQueryCompiler.shift\u001b[0;34m(self, periods, freq, axis, fill_value, suffix)\u001b[0m\n\u001b[1;32m 1669\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_shift_values(periods, axis, fill_value) \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 1670\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1671\u001b[0m \u001b[38;5;66;03m# axis parameter ignored, should be 0 for manipulating index. Revisit in SNOW-1023324\u001b[39;00m\n\u001b[0;32m-> 1672\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_shift_index\u001b[49m\u001b[43m(\u001b[49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/modin/logging/logger_decorator.py:125\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;124;03mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[1;32m 112\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124;03mAny\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m LogMode\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 127\u001b[0m logger \u001b[38;5;241m=\u001b[39m get_logger()\n\u001b[1;32m 128\u001b[0m logger\u001b[38;5;241m.\u001b[39mlog(log_level, start_line)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/compiler/snowflake_query_compiler.py:1636\u001b[0m, in \u001b[0;36mSnowflakeQueryCompiler._shift_index\u001b[0;34m(self, periods, freq)\u001b[0m\n\u001b[1;32m 1633\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m freq \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfreq must be specified when calling shift index\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1635\u001b[0m \u001b[38;5;66;03m# TODO: SNOW-1023324, implement shifting index only.\u001b[39;00m\n\u001b[0;32m-> 1636\u001b[0m \u001b[43mErrorMessage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnot_implemented\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mshifting index values not yet supported.\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:163\u001b[0m, in \u001b[0;36mErrorMessage.not_implemented\u001b[0;34m(cls, message)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnot_implemented\u001b[39m(\u001b[38;5;28mcls\u001b[39m, message: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NoReturn: \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 162\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNotImplementedError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(message)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: shifting index values not yet supported." + ] + } + ], + "source": [ + "ts.shift(5, freq=\"D\")" + ] + }, + { + "cell_type": "code", + "execution_count": 86, + "id": "3548edbe-b2c0-4d7b-b111-b90931af0306", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:48.965242Z", + "iopub.status.busy": "2024-08-29T18:29:48.965096Z", + "iopub.status.idle": "2024-08-29T18:29:49.018205Z", + "shell.execute_reply": "2024-08-29T18:29:49.017842Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "shifting index values not yet supported.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[86], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mts\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshift\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moffsets\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mBDay\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:414\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_method_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 409\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 412\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 413\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 414\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 415\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_method_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_method_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/series.py:2551\u001b[0m, in \u001b[0;36mSeries.shift\u001b[0;34m(self, periods, freq, axis, fill_value, suffix)\u001b[0m\n\u001b[1;32m 2547\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m axis \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 2548\u001b[0m \u001b[38;5;66;03m# pandas compatible error.\u001b[39;00m\n\u001b[1;32m 2549\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo axis named 1 for object type Series\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 2551\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshift\u001b[49m\u001b[43m(\u001b[49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msuffix\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:414\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_method_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 409\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 412\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 413\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 414\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 415\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_method_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_method_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/base.py:3125\u001b[0m, in \u001b[0;36mBasePandasDataset.shift\u001b[0;34m(self, periods, freq, axis, fill_value, suffix)\u001b[0m\n\u001b[1;32m 3122\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m fill_value \u001b[38;5;241m==\u001b[39m no_default:\n\u001b[1;32m 3123\u001b[0m fill_value \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 3125\u001b[0m new_query_compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_query_compiler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshift\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3126\u001b[0m \u001b[43m \u001b[49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msuffix\u001b[49m\n\u001b[1;32m 3127\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3128\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_create_or_update_from_compiler(new_query_compiler, \u001b[38;5;28;01mFalse\u001b[39;00m)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/modin/logging/logger_decorator.py:125\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;124;03mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[1;32m 112\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124;03mAny\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m LogMode\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 127\u001b[0m logger \u001b[38;5;241m=\u001b[39m get_logger()\n\u001b[1;32m 128\u001b[0m logger\u001b[38;5;241m.\u001b[39mlog(log_level, start_line)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/compiler/snowflake_query_compiler.py:1672\u001b[0m, in \u001b[0;36mSnowflakeQueryCompiler.shift\u001b[0;34m(self, periods, freq, axis, fill_value, suffix)\u001b[0m\n\u001b[1;32m 1669\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_shift_values(periods, axis, fill_value) \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 1670\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1671\u001b[0m \u001b[38;5;66;03m# axis parameter ignored, should be 0 for manipulating index. Revisit in SNOW-1023324\u001b[39;00m\n\u001b[0;32m-> 1672\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_shift_index\u001b[49m\u001b[43m(\u001b[49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/modin/logging/logger_decorator.py:125\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;124;03mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[1;32m 112\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124;03mAny\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m LogMode\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 127\u001b[0m logger \u001b[38;5;241m=\u001b[39m get_logger()\n\u001b[1;32m 128\u001b[0m logger\u001b[38;5;241m.\u001b[39mlog(log_level, start_line)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/compiler/snowflake_query_compiler.py:1636\u001b[0m, in \u001b[0;36mSnowflakeQueryCompiler._shift_index\u001b[0;34m(self, periods, freq)\u001b[0m\n\u001b[1;32m 1633\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m freq \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfreq must be specified when calling shift index\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1635\u001b[0m \u001b[38;5;66;03m# TODO: SNOW-1023324, implement shifting index only.\u001b[39;00m\n\u001b[0;32m-> 1636\u001b[0m \u001b[43mErrorMessage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnot_implemented\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mshifting index values not yet supported.\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:163\u001b[0m, in \u001b[0;36mErrorMessage.not_implemented\u001b[0;34m(cls, message)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnot_implemented\u001b[39m(\u001b[38;5;28mcls\u001b[39m, message: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NoReturn: \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 162\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNotImplementedError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(message)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: shifting index values not yet supported." + ] + } + ], + "source": [ + "ts.shift(5, freq=pd.offsets.BDay())" + ] + }, + { + "cell_type": "code", + "execution_count": 87, + "id": "a980c67a-1717-425b-b74f-a277cf73f576", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:49.040235Z", + "iopub.status.busy": "2024-08-29T18:29:49.040085Z", + "iopub.status.idle": "2024-08-29T18:29:49.092607Z", + "shell.execute_reply": "2024-08-29T18:29:49.092282Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "shifting index values not yet supported.", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[87], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mts\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshift\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m5\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mBME\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:414\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_method_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 409\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 412\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 413\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 414\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 415\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_method_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_method_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/series.py:2551\u001b[0m, in \u001b[0;36mSeries.shift\u001b[0;34m(self, periods, freq, axis, fill_value, suffix)\u001b[0m\n\u001b[1;32m 2547\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m axis \u001b[38;5;241m==\u001b[39m \u001b[38;5;241m1\u001b[39m:\n\u001b[1;32m 2548\u001b[0m \u001b[38;5;66;03m# pandas compatible error.\u001b[39;00m\n\u001b[1;32m 2549\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo axis named 1 for object type Series\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 2551\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshift\u001b[49m\u001b[43m(\u001b[49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msuffix\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:414\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_method_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 409\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 412\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 413\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 414\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 415\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_method_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_method_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/base.py:3125\u001b[0m, in \u001b[0;36mBasePandasDataset.shift\u001b[0;34m(self, periods, freq, axis, fill_value, suffix)\u001b[0m\n\u001b[1;32m 3122\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m fill_value \u001b[38;5;241m==\u001b[39m no_default:\n\u001b[1;32m 3123\u001b[0m fill_value \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 3125\u001b[0m new_query_compiler \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_query_compiler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mshift\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 3126\u001b[0m \u001b[43m \u001b[49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43maxis\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfill_value\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msuffix\u001b[49m\n\u001b[1;32m 3127\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3128\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_create_or_update_from_compiler(new_query_compiler, \u001b[38;5;28;01mFalse\u001b[39;00m)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/modin/logging/logger_decorator.py:125\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;124;03mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[1;32m 112\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124;03mAny\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m LogMode\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 127\u001b[0m logger \u001b[38;5;241m=\u001b[39m get_logger()\n\u001b[1;32m 128\u001b[0m logger\u001b[38;5;241m.\u001b[39mlog(log_level, start_line)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/compiler/snowflake_query_compiler.py:1672\u001b[0m, in \u001b[0;36mSnowflakeQueryCompiler.shift\u001b[0;34m(self, periods, freq, axis, fill_value, suffix)\u001b[0m\n\u001b[1;32m 1669\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_shift_values(periods, axis, fill_value) \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 1670\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 1671\u001b[0m \u001b[38;5;66;03m# axis parameter ignored, should be 0 for manipulating index. Revisit in SNOW-1023324\u001b[39;00m\n\u001b[0;32m-> 1672\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_shift_index\u001b[49m\u001b[43m(\u001b[49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/modin/logging/logger_decorator.py:125\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;124;03mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[1;32m 112\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124;03mAny\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m LogMode\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 127\u001b[0m logger \u001b[38;5;241m=\u001b[39m get_logger()\n\u001b[1;32m 128\u001b[0m logger\u001b[38;5;241m.\u001b[39mlog(log_level, start_line)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/compiler/snowflake_query_compiler.py:1636\u001b[0m, in \u001b[0;36mSnowflakeQueryCompiler._shift_index\u001b[0;34m(self, periods, freq)\u001b[0m\n\u001b[1;32m 1633\u001b[0m \u001b[38;5;28;01massert\u001b[39;00m freq \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mfreq must be specified when calling shift index\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 1635\u001b[0m \u001b[38;5;66;03m# TODO: SNOW-1023324, implement shifting index only.\u001b[39;00m\n\u001b[0;32m-> 1636\u001b[0m \u001b[43mErrorMessage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnot_implemented\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mshifting index values not yet supported.\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:163\u001b[0m, in \u001b[0;36mErrorMessage.not_implemented\u001b[0;34m(cls, message)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnot_implemented\u001b[39m(\u001b[38;5;28mcls\u001b[39m, message: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NoReturn: \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 162\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNotImplementedError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(message)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: shifting index values not yet supported." + ] + } + ], + "source": [ + "ts.shift(5, freq=\"BME\")" + ] + }, + { + "cell_type": "markdown", + "id": "00d1f5cf-c073-4c60-949b-404953b80000", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "## Frequency conversion" + ] + }, + { + "cell_type": "code", + "execution_count": 88, + "id": "0a0b12b0-3ed9-476e-b98c-c1d04162627b", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:49.114367Z", + "iopub.status.busy": "2024-08-29T18:29:49.114220Z", + "iopub.status.idle": "2024-08-29T18:29:49.157150Z", + "shell.execute_reply": "2024-08-29T18:29:49.156789Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "offset B is not implemented in Snowpark pandas API", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[88], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m dr \u001b[38;5;241m=\u001b[39m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mdate_range\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43m1/1/2010\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mperiods\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m3\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m3\u001b[39;49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43m \u001b[49m\u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43moffsets\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mBDay\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3\u001b[0m ts \u001b[38;5;241m=\u001b[39m pd\u001b[38;5;241m.\u001b[39mSeries(np\u001b[38;5;241m.\u001b[39mrandom\u001b[38;5;241m.\u001b[39mrandn(\u001b[38;5;241m3\u001b[39m), index\u001b[38;5;241m=\u001b[39mdr)\n\u001b[1;32m 5\u001b[0m ts\u001b[38;5;241m.\u001b[39masfreq(pd\u001b[38;5;241m.\u001b[39moffsets\u001b[38;5;241m.\u001b[39mBDay())\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:454\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_standalone_function_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 447\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 448\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 449\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 452\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 453\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 454\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 455\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 456\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 457\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 458\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 459\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/pandas/general.py:2405\u001b[0m, in \u001b[0;36mdate_range\u001b[0;34m(start, end, periods, freq, tz, normalize, name, inclusive, **kwargs)\u001b[0m\n\u001b[1;32m 2401\u001b[0m \u001b[38;5;66;03m# If a timezone is not explicitly given via `tz`, see if one can be inferred from the `start` and `end` endpoints.\u001b[39;00m\n\u001b[1;32m 2402\u001b[0m \u001b[38;5;66;03m# If more than one of these inputs provides a timezone, require that they all agree.\u001b[39;00m\n\u001b[1;32m 2403\u001b[0m tz \u001b[38;5;241m=\u001b[39m _infer_tz_from_endpoints(start, end, tz)\n\u001b[0;32m-> 2405\u001b[0m qc \u001b[38;5;241m=\u001b[39m \u001b[43mSnowflakeQueryCompiler\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_date_range\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2406\u001b[0m \u001b[43m \u001b[49m\u001b[43mstart\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2407\u001b[0m \u001b[43m \u001b[49m\u001b[43mend\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mend\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2408\u001b[0m \u001b[43m \u001b[49m\u001b[43mperiods\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2409\u001b[0m \u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfreq\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2410\u001b[0m \u001b[43m \u001b[49m\u001b[43mtz\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtz\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2411\u001b[0m \u001b[43m \u001b[49m\u001b[43mleft_inclusive\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mleft_inclusive\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2412\u001b[0m \u001b[43m \u001b[49m\u001b[43mright_inclusive\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mright_inclusive\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2413\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2414\u001b[0m \u001b[38;5;66;03m# Set date range as index column.\u001b[39;00m\n\u001b[1;32m 2415\u001b[0m qc \u001b[38;5;241m=\u001b[39m qc\u001b[38;5;241m.\u001b[39mset_index_from_columns(qc\u001b[38;5;241m.\u001b[39mcolumns\u001b[38;5;241m.\u001b[39mtolist(), include_index\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/modin/logging/logger_decorator.py:125\u001b[0m, in \u001b[0;36menable_logging..decorator..run_and_log\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 110\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 111\u001b[0m \u001b[38;5;124;03mCompute function with logging if Modin logging is enabled.\u001b[39;00m\n\u001b[1;32m 112\u001b[0m \n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 122\u001b[0m \u001b[38;5;124;03mAny\u001b[39;00m\n\u001b[1;32m 123\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m 124\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m LogMode\u001b[38;5;241m.\u001b[39mget() \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mdisable\u001b[39m\u001b[38;5;124m\"\u001b[39m:\n\u001b[0;32m--> 125\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mobj\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 127\u001b[0m logger \u001b[38;5;241m=\u001b[39m get_logger()\n\u001b[1;32m 128\u001b[0m logger\u001b[38;5;241m.\u001b[39mlog(log_level, start_line)\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/compiler/snowflake_query_compiler.py:691\u001b[0m, in \u001b[0;36mSnowflakeQueryCompiler.from_date_range\u001b[0;34m(cls, start, end, periods, freq, tz, left_inclusive, right_inclusive)\u001b[0m\n\u001b[1;32m 689\u001b[0m dt_values \u001b[38;5;241m=\u001b[39m ns_values\u001b[38;5;241m.\u001b[39mseries_to_datetime()\n\u001b[1;32m 690\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 691\u001b[0m dt_values \u001b[38;5;241m=\u001b[39m \u001b[43mgenerator_utils\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgenerate_irregular_range\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 692\u001b[0m \u001b[43m \u001b[49m\u001b[43mstart\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mend\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mperiods\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfreq\u001b[49m\n\u001b[1;32m 693\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 694\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 695\u001b[0m \u001b[38;5;66;03m# Create a linearly spaced date_range in local time\u001b[39;00m\n\u001b[1;32m 696\u001b[0m \u001b[38;5;66;03m# This is the original pandas source code:\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 700\u001b[0m \u001b[38;5;66;03m# )\u001b[39;00m\n\u001b[1;32m 701\u001b[0m \u001b[38;5;66;03m# Here we implement it similarly as np.linspace\u001b[39;00m\n\u001b[1;32m 702\u001b[0m div \u001b[38;5;241m=\u001b[39m periods \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;66;03m# type: ignore[operator]\u001b[39;00m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/generator_utils.py:216\u001b[0m, in \u001b[0;36mgenerate_irregular_range\u001b[0;34m(start, end, periods, offset)\u001b[0m\n\u001b[1;32m 213\u001b[0m periods \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;241m1\u001b[39m\n\u001b[1;32m 215\u001b[0m num_offsets \u001b[38;5;241m=\u001b[39m get_active_session()\u001b[38;5;241m.\u001b[39mrange(start\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m0\u001b[39m, end\u001b[38;5;241m=\u001b[39mperiods, step\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[0;32m--> 216\u001b[0m sf_date_or_time_part \u001b[38;5;241m=\u001b[39m \u001b[43m_offset_name_to_sf_date_or_time_part\u001b[49m\u001b[43m(\u001b[49m\u001b[43moffset\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mname\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 217\u001b[0m dt_col \u001b[38;5;241m=\u001b[39m builtin(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mDATEADD\u001b[39m\u001b[38;5;124m\"\u001b[39m)(\n\u001b[1;32m 218\u001b[0m sf_date_or_time_part,\n\u001b[1;32m 219\u001b[0m offset\u001b[38;5;241m.\u001b[39mn \u001b[38;5;241m*\u001b[39m col(num_offsets\u001b[38;5;241m.\u001b[39mcolumns[\u001b[38;5;241m0\u001b[39m]),\n\u001b[1;32m 220\u001b[0m pandas_lit(start),\n\u001b[1;32m 221\u001b[0m )\n\u001b[1;32m 222\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m offset\u001b[38;5;241m.\u001b[39mname \u001b[38;5;129;01min\u001b[39;00m LAST_DAY:\n\u001b[1;32m 223\u001b[0m \u001b[38;5;66;03m# When last day is required, we need to explicitly call LAST_DAY SQL function to convert DATEADD results to the\u001b[39;00m\n\u001b[1;32m 224\u001b[0m \u001b[38;5;66;03m# last day, e.g., adding one month to \"2/29/2024\" using DATEADD results \"3/29/2024\", which is not the last day\u001b[39;00m\n\u001b[1;32m 225\u001b[0m \u001b[38;5;66;03m# of March. So we need to call LAST_DAY. Also, LAST_DAY only return the date, then we need to reconstruct the\u001b[39;00m\n\u001b[1;32m 226\u001b[0m \u001b[38;5;66;03m# timestamp using timestamp_ntz_from_parts\u001b[39;00m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/generator_utils.py:162\u001b[0m, in \u001b[0;36m_offset_name_to_sf_date_or_time_part\u001b[0;34m(name)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m name \u001b[38;5;129;01min\u001b[39;00m OFFSET_NAME_TO_SF_DATE_OR_TIME_PART_MAP:\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m OFFSET_NAME_TO_SF_DATE_OR_TIME_PART_MAP[name]\n\u001b[0;32m--> 162\u001b[0m \u001b[43mErrorMessage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnot_implemented\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 163\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43moffset \u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mname\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m is not implemented in Snowpark pandas API\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 164\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 165\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:163\u001b[0m, in \u001b[0;36mErrorMessage.not_implemented\u001b[0;34m(cls, message)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnot_implemented\u001b[39m(\u001b[38;5;28mcls\u001b[39m, message: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NoReturn: \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 162\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNotImplementedError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(message)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: offset B is not implemented in Snowpark pandas API" + ] + } + ], + "source": [ + "dr = pd.date_range(\"1/1/2010\", periods=3, freq=3 * pd.offsets.BDay())\n", + "\n", + "ts = pd.Series(np.random.randn(3), index=dr)\n", + "\n", + "ts.asfreq(pd.offsets.BDay())" + ] + }, + { + "cell_type": "markdown", + "id": "0bf19b9b-5cf1-4d1e-958b-a056a366464e", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "# Converting between representations" + ] + }, + { + "cell_type": "code", + "execution_count": 89, + "id": "a0e7fb20-dd4a-456a-8557-aeea61ac0c3b", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:49.169934Z", + "iopub.status.busy": "2024-08-29T18:29:49.169800Z", + "iopub.status.idle": "2024-08-29T18:29:50.822553Z", + "shell.execute_reply": "2024-08-29T18:29:50.821016Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "outputs": [ + { + "data": { + "text/plain": [ + "2012-01-31 -0.513578\n", + "2012-02-29 -0.471256\n", + "2012-03-31 1.608285\n", + "2012-04-30 -1.384413\n", + "2012-05-31 2.278423\n", + "Freq: None, dtype: float64" + ] + }, + "execution_count": 89, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "rng = pd.date_range(\"1/1/2012\", periods=5, freq=\"ME\")\n", + "\n", + "ts = pd.Series(np.random.randn(len(rng)), index=rng)\n", + "\n", + "ts" + ] + }, + { + "cell_type": "code", + "execution_count": 90, + "id": "96b177da-d407-4297-bcc5-d7f2a8b4ee12", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:50.828267Z", + "iopub.status.busy": "2024-08-29T18:29:50.827874Z", + "iopub.status.idle": "2024-08-29T18:29:50.875859Z", + "shell.execute_reply": "2024-08-29T18:29:50.875468Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NotImplementedError", + "evalue": "Snowpark pandas does not yet support the method Series.to_period", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNotImplementedError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[90], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m ps \u001b[38;5;241m=\u001b[39m \u001b[43mts\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mto_period\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 3\u001b[0m ps\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:414\u001b[0m, in \u001b[0;36msnowpark_pandas_telemetry_method_decorator..wrap\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 407\u001b[0m \u001b[38;5;129m@functools\u001b[39m\u001b[38;5;241m.\u001b[39mwraps(func)\n\u001b[1;32m 408\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mwrap\u001b[39m(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs): \u001b[38;5;66;03m# type: ignore\u001b[39;00m\n\u001b[1;32m 409\u001b[0m \u001b[38;5;66;03m# add a `type: ignore` for this function definition because the\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 412\u001b[0m \u001b[38;5;66;03m# hints in-line here. We'll fix up the type with a `cast` before\u001b[39;00m\n\u001b[1;32m 413\u001b[0m \u001b[38;5;66;03m# returning the function.\u001b[39;00m\n\u001b[0;32m--> 414\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43m_telemetry_helper\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 415\u001b[0m \u001b[43m \u001b[49m\u001b[43mfunc\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 416\u001b[0m \u001b[43m \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 417\u001b[0m \u001b[43m \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 418\u001b[0m \u001b[43m \u001b[49m\u001b[43mis_standalone_function\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mFalse\u001b[39;49;00m\u001b[43m,\u001b[49m\n\u001b[1;32m 419\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_name\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_name\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 420\u001b[0m \u001b[43m \u001b[49m\u001b[43mproperty_method_type\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mproperty_method_type\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 421\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:341\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n\u001b[0;32m--> 341\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m e\n\u001b[1;32m 343\u001b[0m \u001b[38;5;66;03m# Not inplace lazy APIs: add curr_api_call to the result\u001b[39;00m\n\u001b[1;32m 344\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_snowpark_pandas_dataframe_or_series_type(result):\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/_internal/telemetry.py:327\u001b[0m, in \u001b[0;36m_telemetry_helper\u001b[0;34m(func, args, kwargs, is_standalone_function, property_name, property_method_type)\u001b[0m\n\u001b[1;32m 321\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 322\u001b[0m \u001b[38;5;66;03m# query_history is a QueryHistory instance which is a Context Managers\u001b[39;00m\n\u001b[1;32m 323\u001b[0m \u001b[38;5;66;03m# See example in https://github.com/snowflakedb/snowpark-python/blob/main/src/snowflake/snowpark/session.py#L2052\u001b[39;00m\n\u001b[1;32m 324\u001b[0m \u001b[38;5;66;03m# Use `nullcontext` to handle `session` lacking `query_history` attribute without raising an exception.\u001b[39;00m\n\u001b[1;32m 325\u001b[0m \u001b[38;5;66;03m# This prevents telemetry from interfering with regular API calls.\u001b[39;00m\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m \u001b[38;5;28mgetattr\u001b[39m(session, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mquery_history\u001b[39m\u001b[38;5;124m\"\u001b[39m, nullcontext)() \u001b[38;5;28;01mas\u001b[39;00m query_history:\n\u001b[0;32m--> 327\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m 329\u001b[0m \u001b[38;5;66;03m# Send Telemetry and Raise Error\u001b[39;00m\n\u001b[1;32m 330\u001b[0m _send_snowpark_pandas_telemetry_helper(\n\u001b[1;32m 331\u001b[0m session\u001b[38;5;241m=\u001b[39msession,\n\u001b[1;32m 332\u001b[0m telemetry_type\u001b[38;5;241m=\u001b[39merror_to_telemetry_type(e),\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 339\u001b[0m api_calls\u001b[38;5;241m=\u001b[39mexisting_api_calls \u001b[38;5;241m+\u001b[39m [curr_api_call],\n\u001b[1;32m 340\u001b[0m )\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:117\u001b[0m, in \u001b[0;36m_make_not_implemented_decorator..not_implemented_decorator..make_error_raiser..raise_not_implemented_method_error\u001b[0;34m(cls_or_self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 115\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 116\u001b[0m non_null_attribute_prefix \u001b[38;5;241m=\u001b[39m attribute_prefix\n\u001b[0;32m--> 117\u001b[0m \u001b[43mErrorMessage\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mnot_implemented\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 118\u001b[0m \u001b[43m \u001b[49m\u001b[43mmessage\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43mf\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43m_snowpark_pandas_does_not_yet_support\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m method \u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mnon_null_attribute_prefix\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m.\u001b[39;49m\u001b[38;5;132;43;01m{\u001b[39;49;00m\u001b[43mname\u001b[49m\u001b[38;5;132;43;01m}\u001b[39;49;00m\u001b[38;5;124;43m\"\u001b[39;49m\n\u001b[1;32m 119\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n", + "File \u001b[0;32m/opt/homebrew/Caskroom/miniconda/base/envs/snowpandas-dev-3.9/lib/python3.9/site-packages/snowflake/snowpark/modin/plugin/utils/error_message.py:163\u001b[0m, in \u001b[0;36mErrorMessage.not_implemented\u001b[0;34m(cls, message)\u001b[0m\n\u001b[1;32m 160\u001b[0m \u001b[38;5;129m@classmethod\u001b[39m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mnot_implemented\u001b[39m(\u001b[38;5;28mcls\u001b[39m, message: \u001b[38;5;28mstr\u001b[39m) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m NoReturn: \u001b[38;5;66;03m# pragma: no cover\u001b[39;00m\n\u001b[1;32m 162\u001b[0m logger\u001b[38;5;241m.\u001b[39mdebug(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNotImplementedError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mmessage\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m--> 163\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(message)\n", + "\u001b[0;31mNotImplementedError\u001b[0m: Snowpark pandas does not yet support the method Series.to_period" + ] + } + ], + "source": [ + "ps = ts.to_period()\n", + "\n", + "ps" + ] + }, + { + "cell_type": "code", + "execution_count": 91, + "id": "781d74b4-a7fd-4f58-a8af-fa21598502b0", + "metadata": { + "editable": true, + "execution": { + "iopub.execute_input": "2024-08-29T18:29:50.882425Z", + "iopub.status.busy": "2024-08-29T18:29:50.882283Z", + "iopub.status.idle": "2024-08-29T18:29:50.891056Z", + "shell.execute_reply": "2024-08-29T18:29:50.890772Z" + }, + "slideshow": { + "slide_type": "" + }, + "tags": [ + "raises-exception" + ] + }, + "outputs": [ + { + "ename": "NameError", + "evalue": "name 'ps' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[91], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mps\u001b[49m\u001b[38;5;241m.\u001b[39mto_timestamp()\n", + "\u001b[0;31mNameError\u001b[0m: name 'ps' is not defined" + ] + } + ], + "source": [ + "ps.to_timestamp()" + ] + }, + { + "cell_type": "markdown", + "id": "bf270f9c-86e0-4161-a187-7b0dbb2e47b6", + "metadata": { + "editable": true, + "slideshow": { + "slide_type": "" + }, + "tags": [] + }, + "source": [ + "### Timestamp Binary Operations" + ] + }, + { + "cell_type": "code", + "execution_count": 92, + "id": "dd818a8d-97c1-46f3-b29f-499ba92f22ae", + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-29T18:29:50.892808Z", + "iopub.status.busy": "2024-08-29T18:29:50.892693Z", + "iopub.status.idle": "2024-08-29T18:29:50.895580Z", + "shell.execute_reply": "2024-08-29T18:29:50.895348Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Timedelta('396 days 03:00:00')" + ] + }, + "execution_count": 92, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.to_datetime('2018-10-26 12:00:00') - pd.to_datetime('2017-09-25 09:00:00')" + ] + }, + { + "cell_type": "code", + "execution_count": 93, + "id": "7c9a87d2-7883-46a6-8433-dfa5900ca9b0", + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-29T18:29:50.897291Z", + "iopub.status.busy": "2024-08-29T18:29:50.897187Z", + "iopub.status.idle": "2024-08-29T18:29:50.899233Z", + "shell.execute_reply": "2024-08-29T18:29:50.899001Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Timedelta('6 days 07:00:00')" + ] + }, + "execution_count": 93, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.Timestamp(\"2014-08-01 10:00\") - pd.Timestamp(\"2014-07-26 03:00\")" + ] + }, + { + "cell_type": "code", + "execution_count": 94, + "id": "e78454b1-0d4c-42bc-a127-b21a4a7f09cf", + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-29T18:29:50.900969Z", + "iopub.status.busy": "2024-08-29T18:29:50.900862Z", + "iopub.status.idle": "2024-08-29T18:29:50.903164Z", + "shell.execute_reply": "2024-08-29T18:29:50.902915Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Timedelta('682 days 03:00:00')" + ] + }, + "execution_count": 94, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "pd.Timestamp(year=2017, month=1, day=1, hour=12) - pd.Timestamp(year=2015, month=2, day=19, hour=9)" + ] + }, + { + "cell_type": "code", + "execution_count": 95, + "id": "2534d141-1862-4901-ba70-7ed73ab9abdd", + "metadata": { + "execution": { + "iopub.execute_input": "2024-08-29T18:29:50.904678Z", + "iopub.status.busy": "2024-08-29T18:29:50.904564Z", + "iopub.status.idle": "2024-08-29T18:29:50.907623Z", + "shell.execute_reply": "2024-08-29T18:29:50.907269Z" + } + }, + "outputs": [ + { + "data": { + "text/plain": [ + "Timedelta('-31 days +03:09:02')" + ] + }, + "execution_count": 95, "metadata": {}, "output_type": "execute_result" }