-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathwordanalysis.py
46 lines (36 loc) · 1.57 KB
/
wordanalysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from lisc import Words
from lisc.utils.db import SCDB
from lisc.data import Articles, ArticlesAll
from lisc.utils.io import load_object
from lisc.utils.io import save_object
from lisc.plts.words import plot_wordcloud
import matplotlib.pyplot as plt
# Set up some terms
terms = [['crowdsourcing','crowdsrouced','Citizen science','crowd'], ['user interface','UI','quality', 'data quality','information system']]
# Initialize Words object and set the terms to search for
words = Words()
words.add_terms(terms)
# Set up our database object, so we can save out data as we go
db = SCDB('lisc_db')
# Collect words data
words.run_collection(usehistory=True, retmax='50', save_and_clear=True, directory=db)
# Save out the words data
save_object(words, 'tutorial_words', directory=db)
# Reload the words object
words = load_object('tutorial_words', directory=SCDB('lisc_db'))
# Reload all data
for ind in range(words.n_terms):
words.results[ind].load(directory=db)
# Collect into list of aggregated data objects
all_articles = [ArticlesAll(words[label]) for label in words.labels]
# Plot a WordCloud of the collected data for the first term
# print (all_articles[0].words)
plot_wordcloud(all_articles[0].words, 25)
plt.savefig("output3.png")
# cloud.to_file('output3.png')
# Iterating through articles found from a particular search term
# The iteration returns a dictionary with all the article data
with open("article.txt", "w") as file:
for art in words['crowdsourcing']:
# if art['year']>2018:
file.write('%s\n' % art['title'])