-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdata_utils.py
245 lines (199 loc) · 7.58 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
import torch
from tqdm import tqdm
import random
import time
import numpy as np
import scipy.sparse as sp
from multiprocessing import Pool, cpu_count
from ogb.nodeproppred import DglNodePropPredDataset
# global vars used in data sampling steps in create_node_ids()
all_1hop_indices = None
all_2hop_indices = None
all_nodes_set = None
seq_length = None
def get_ogbn_products_with_splits():
dataset = DglNodePropPredDataset(name="ogbn-products")
g = dataset[0][0]
split_idx = dataset.get_idx_split()
adj = g.adj_external(scipy_fmt="csr")
features = g.ndata["feat"]
labels = torch.nn.functional.one_hot(
dataset[0][1].view(-1), dataset[0][1].max() + 1
)
idx_train = split_idx["train"]
idx_val = split_idx["valid"]
idx_test = split_idx["test"]
return adj, features, labels, idx_train, idx_val, idx_test
def get_snap_patents_with_splits():
import scipy
fulldata = scipy.io.loadmat(f"data/snap_patents.mat")
edge_index = torch.tensor(fulldata["edge_index"], dtype=torch.long)
num_nodes = int(fulldata["num_nodes"])
features = torch.tensor(fulldata["node_feat"].todense(), dtype=torch.float)
adj = sp.csr_matrix(
(torch.ones(edge_index.shape[1]), edge_index),
shape=(num_nodes, num_nodes),
dtype=np.int64,
)
labels, idx_train, idx_val, idx_test = (
torch.rand(1),
torch.rand(1),
torch.rand(1),
torch.rand(1),
)
return adj, features, labels, idx_train, idx_val, idx_test
def get_ogbn_papers100M_with_splits():
dataset = DglNodePropPredDataset(name="ogbn-papers100M")
g = dataset[0][0]
split_idx = dataset.get_idx_split()
adj = g.adj_external(scipy_fmt="csr")
features = g.ndata["feat"]
labels = torch.rand(1) # dummy value as it is not required for GOAT2 code
idx_train = split_idx["train"]
idx_val = split_idx["valid"]
idx_test = split_idx["test"]
return adj, features, labels, idx_train, idx_val, idx_test
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64)
)
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
# for one node; to be exectuted in parallel
def get_node_ids_for_all_seq(i):
"""Returns node ids for all seqs, sampled from 1/2 hop neighborhood"""
# i, hop1indices, hop2indices, all_nodes_set, seq_length = args
global all_1hop_indices, all_2hop_indices, all_nodes_set, seq_length
hop1_neighbors = all_1hop_indices[i].tolist()
hop2_neighbors = all_2hop_indices[i].tolist()
all_applicable_neighbors = hop1_neighbors + hop2_neighbors
if len(all_applicable_neighbors) < seq_length - 1:
if len(all_applicable_neighbors) == 0:
sampled_neighbors = random.sample(all_nodes_set, seq_length - 1)
else:
repeat_count = ((seq_length - 1) // len(all_applicable_neighbors)) + 1
repeated_neighbor_list = all_applicable_neighbors * repeat_count
sampled_neighbors = repeated_neighbor_list[: seq_length - 1]
else:
# for cases where node has >= 99 hop1 and hop2 neighbors
sampled_neighbors = random.sample(all_applicable_neighbors, seq_length - 1)
return [i] + sampled_neighbors
def create_node_ids(X, adj_matrix, for_nagphormer=False, sample_node_len=0):
global all_1hop_indices, all_2hop_indices, all_nodes_set, seq_length
N = X.size(0)
all_nodes_set = list(set(range(N)))
seq_length = sample_node_len
print("multiset length for sampling: ", seq_length)
t0 = time.time()
print("multiplying csr matrix to itself...")
adj_matrix_2hop = adj_matrix @ adj_matrix
print("Done", time.time() - t0)
print("getting all 1 hop indices...")
all_1hop_indices = np.split(adj_matrix.indices, adj_matrix.indptr)[1:-1]
print("Done\ngetting all 2 hop indices...")
all_2hop_indices = np.split(adj_matrix_2hop.indices, adj_matrix_2hop.indptr)[1:-1]
print("Done!")
# Parallelize the loop and collect the results
with Pool(cpu_count() - 1) as pool:
args_list = [i for i in range(N)]
node_ids_for_all_seq = list(
tqdm(pool.imap(get_node_ids_for_all_seq, args_list), total=N)
)
print(
"Retrieved node ids for all seqs, now preparing hop2token feats for hop=2... "
)
t0 = time.time()
if for_nagphormer:
hop2token_range = 10
else:
hop2token_range = 3
# Use 1-hop 2-hop 3-hop feature information from hop2token of nagphormer
hop2token_feats = torch.empty(X.size(0), 1, hop2token_range, X.size(1))
renormalize = True # required for preparing hop2token feats
if renormalize:
adj_matrix = adj_matrix + sp.eye(adj_matrix.shape[0])
D1 = np.array(adj_matrix.sum(axis=1)) ** (-0.5)
D2 = np.array(adj_matrix.sum(axis=0)) ** (-0.5)
D1 = sp.diags(D1[:, 0], format="csr")
D2 = sp.diags(D2[0, :], format="csr")
A = adj_matrix.dot(D1)
A = D2.dot(A)
adj_matrix = A
adj_matrix = sparse_mx_to_torch_sparse_tensor(adj_matrix)
tmp = X + torch.zeros_like(X)
for i in range(hop2token_range):
# only preparing 3-hop for hop2token feats
# expts could use upto 2-hop only
tmp = torch.matmul(adj_matrix, tmp)
for index in range(X.shape[0]):
hop2token_feats[index, 0, i, :] = tmp[index]
hop2token_feats = hop2token_feats.squeeze()
print("DONE!", time.time() - t0)
del adj_matrix, adj_matrix_2hop, tmp
print("Saving now ...")
return node_ids_for_all_seq, hop2token_feats
def get_data_pt_file(name, data_args, sample_node_len):
# adj_matrix, X, labels, idx_train, idx_val, idx_test = data_args
adj_matrix = data_args[0]
X = torch.tensor(data_args[1], dtype=torch.float32)
labels = torch.tensor(data_args[2])
idx_train = torch.tensor(data_args[3])
idx_val = torch.tensor(data_args[4])
idx_test = torch.tensor(data_args[5])
if name.split("_")[1] == "nagphormer":
file_save_name = "dataset/" + name + ".pt"
for_nagphormer = True
else:
for_nagphormer = False
if name.split("_")[0] == "ogbn-products":
file_save_name = (
"data/ogbn-products"
+ "_sample_node_len_"
+ str(sample_node_len)
+ ".pt"
)
elif name.split("_")[0] == "snap-patents":
file_save_name = (
"data/snap-patents" + "_sample_node_len_" + str(sample_node_len) + ".pt"
)
elif name.split("_")[0] == "ogbn-papers100M":
file_save_name = (
"data/ogbn-papers100M"
+ "_sample_node_len_"
+ str(sample_node_len)
+ ".pt"
)
else:
raise Exception
t0 = time.time()
node_ids_for_all_seq, hop2token_feats = create_node_ids(
X, adj_matrix, for_nagphormer, sample_node_len
)
torch.save(
(
node_ids_for_all_seq,
X,
hop2token_feats,
adj_matrix,
labels,
idx_train,
idx_val,
idx_test,
),
file_save_name,
pickle_protocol=4,
)
print("total time taken: ", time.time() - t0)
return (
node_ids_for_all_seq,
X,
hop2token_feats,
adj_matrix,
labels,
idx_train,
idx_val,
idx_test,
)