forked from aleksispi/pose-drl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run_generate_finetuned_instance_cache.m
320 lines (254 loc) · 9.3 KB
/
run_generate_finetuned_instance_cache.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
function run_generate_finetuned_instance_cache(instance_weights, mode, vgg_path, fine_itr)
% Generates a cache of instance features for the detections
if ~exist('mode', 'var')
mode = 'train';
end
clc;
close all;
% Add paths
addpath('code/');
addpath('code/panoptic');
addpath('code/utils');
% Setup global config settings
load_config(mode);
% Create helper
helper = Helpers();
helper.setup_caffe();
% Launch panoptic environment and start caching
global CONFIG
CONFIG.predictor_limited_caching = 1;
CONFIG.predictor_disabled = 1;
CONFIG.predictor_precache = 0;
vgg = caffe.Net('models/instance_classifier/vgg19.prototxt', vgg_path, 'test');
env = Panoptic(CONFIG.dataset_path, CONFIG.dataset_cache, nan);
for scene_idx = 1:numel(env.scenes)
env.goto_scene(scene_idx);
fprintf('Scene: %s\n', env.scene().scene_name);
save_path = strcat(CONFIG.dataset_cache, '/', 'mubynet', '/', env.scene().scene_name, '/instance_tuned.mat');
if exist(save_path, 'file') == 2
fprintf('Already cached, skipping!\n');
continue
end
% Reset network before fine tuning
if env.scene().nbr_persons > 1
fined_tuned_weights = sprintf('%s%s_instance_weights_gt_%d.caffemodel', CONFIG.dataset_cache, env.scene().scene_name, fine_itr);
if exist(fined_tuned_weights, 'file') ~= 2
fprintf('Fine tuning instance network...\n');
solver = caffe.get_solver('models/instance_classifier/solver.prototxt');
net = solver.net;
net.copy_from(instance_weights);
finetune(solver, net, vgg, env, fine_itr);
net.save(fined_tuned_weights);
else
fprintf('Fine tuned weights already found, using those!\n');
end
net = caffe.Net('models/instance_classifier/deploy.prototxt', fined_tuned_weights, 'test');
else
fprintf('Skip fine tuning, not multiple people!\n');
net = caffe.Net('models/instance_classifier/deploy.prototxt', instance_weights, 'test');
end
data = cell(env.scene().nbr_frames, env.scene().nbr_cameras);
for frame_idx = 1:env.scene().nbr_frames
fprintf(' frame: %d/%d\n', frame_idx, env.scene().nbr_frames);
for camera_idx = 1:env.scene().nbr_cameras
poses = env.scene().pose_cache{frame_idx, camera_idx};
bboxes_dataset = strcat('/detections_', env.scene().scene_name, '_', ...
env.scene().camera_names{camera_idx}, '_', ...
strrep(env.scene().frame_names{frame_idx}, '.jpg', ''));
det_path = strcat(env.scene().dataset_path, env.scene().scene_name, '/detections.h5');
det_boxes = h5read(det_path, bboxes_dataset);
nbr_poses = numel(poses);
% Get Faster R-CNN detection boxes
detections = nan(nbr_poses, 50);
for detection_id = 1:numel(poses)
pred = poses{detection_id};
confs = pred(:, 3);
pred = pred(:, 1 : 2);
pred(confs == 0, :) = nan;
muby_box = env.scene().pose_to_bbox(pred);
% try to match mubynet pose with best faster-rcnn box
best_iou = 0;
best_faster_box = nan;
for faster_id = 1:size(det_boxes, 1)
fast_box = [det_boxes(faster_id, 2), det_boxes(faster_id, 4), det_boxes(faster_id, 1), det_boxes(faster_id, 3)];
iou = helper.iou(fast_box, muby_box);
if iou > best_iou
best_iou = iou;
best_faster_box = fast_box;
end
end
if best_iou > 0.1
bbox = best_faster_box;
else
bbox = muby_box;
end
img = env.scene().get_img(frame_idx, camera_idx);
% Get bbox
img = env.scene().crop_human(img, bbox);
% Get VGG19 features
img = imresize(img, [224, 224]);
vgg.blobs('data').set_data(img);
vgg.forward_prefilled();
f = vgg.blobs('conv5_4/bn').get_data();
f = f(:);
% Get instance features
net.blobs('data').set_data(f);
net.forward_prefilled();
f1 = net.blobs('feat').get_data();
detections(detection_id, :) = f1;
end
data{frame_idx, camera_idx} = detections;
end
end
save(save_path, 'data');
end
end
function finetune(solver, net, vgg, env, iterations)
total_time = tic;
training_time = 0;
batch_size = 16;
for it = 1:iterations
fprintf('Batch %d/%d\n', it, iterations);
% Build batch
batch = cell(batch_size, 2);
for batch_idx = 1:batch_size
% Either matching pair or not.
if mod(batch_idx, 2) == 0
same = 1;
else
same = 0;
end
[f1, f2, t] = get_pair(env, same, vgg);
training_time = training_time + t;
batch{batch_idx, 1} = f1;
batch{batch_idx, 2} = f2;
batch{batch_idx, 3} = same;
end
tic
net.blobs('data').set_data(cat(2, batch{:, 1}));
net.blobs('data_p').set_data(cat(2, batch{:, 2}));
net.blobs('label').set_data(cat(2, batch{:, 3}));
training_time = training_time + toc;
% Do training
solver.step(1);
loss = net.blobs('loss').get_data();
if mod(it, 10) == 0
fprintf('Training steps: %d, samples: %d, loss: %f\n', it, it * batch_size, loss);
end
end
fprintf('Total refine time: %ds, time spent training: %ds\n', toc(total_time), training_time);
end
%%% Start of training functions from run_train_instance_detector.m
function [f1, f2, vgg_time] = get_pair(env, same, vgg)
% Random scene
while 1
vgg_time = 0;
% Random start frame, camera, scene, person
% env.reset(); --- do not change scene
env.goto_frame(randi(env.scene().nbr_frames));
env.goto_cam(randi(env.scene().nbr_cameras));
env.goto_person(randi(env.scene().nbr_persons));
% Retry until good view
[yes, ~] = is_visible(env);
if ~yes
continue
end
% Get features for person 1
[f1, t] = get_features(env, vgg);
vgg_time = vgg_time + t;
% Switch target if negative example
if ~same
old_pid = env.person_idx;
new_pid = old_pid;
while new_pid == old_pid
env.goto_person(randi(env.scene().nbr_persons));
new_pid = env.person_idx;
end
end
frame_idx = env.frame_idx;
tries = 5;
while tries > 0
% Prevent getting stuck in a loop
tries = tries -1;
% Select new random view
max_frame = min(frame_idx + 5 * 10, env.scene().nbr_frames);
min_frame = max(frame_idx - 5 * 10, 1);
env.goto_frame(randi([min_frame, max_frame]));
env.goto_cam(randi(env.scene().nbr_cameras));
% Retry until good view
[yes, ~] = is_visible(env);
if yes
break
end
end
if tries <= 0
% Didn't find a good f2, restart with new f1.
continue;
end
[f2, t] = get_features(env, vgg);
vgg_time = vgg_time + t;
break;
end
end
function [f, t] = get_features(env, vgg)
img = get_features_img(env);
img = imresize(img, [224, 224]);
vgg.blobs('data').set_data(img);
tic;
vgg.forward_prefilled();
f = vgg.blobs('conv5_4/bn').get_data();
t = toc;
f = f(:);
end
% Function to extract features
function f = get_features_img(env)
f = env.get_current_img();
global CONFIG
annots = env.scene().get_projected_annot(env.frame_idx, env.camera_idx, env.person_idx);
annots = round(annots);
coord_min = min(annots);
coord_max = max(annots);
coord_min(1) = coord_min(1) - CONFIG.panoptic_crop_margin(1);
coord_min(2) = coord_min(2) - CONFIG.panoptic_crop_margin(2);
coord_max(1) = coord_max(1) + CONFIG.panoptic_crop_margin(1);
coord_max(2) = coord_max(2) + CONFIG.panoptic_crop_margin(2);
bbox = [coord_min(2), coord_max(2), coord_min(1), coord_max(1)];
f = env.scene().crop_human(f, bbox);
end
function bbox = pose_to_bbox(pose)
p_start = min(pose);
p_size = max(pose) - p_start;
bbox = [p_start(1), p_start(2), p_size(1), p_size(2)];
end
% Function to check if the target is visible and not occluded.
function [yes, bbox_idx] = is_visible(env)
yes = 0;
bbox_idx = -1;
pose = env.scene().get_projected_annot(env.frame_idx, env.camera_idx, env.person_idx);
bbox = pose_to_bbox(pose);
if bbox(3) < 32 || bbox(4) < 32
return;
end
img_box = [0, 0, 1920, 1080];
% bbox overlaps with image
in_ratio = bboxOverlapRatio(bbox, img_box, 'min');
if in_ratio < 0.8
return
end
old_pid = env.person_idx;
for pid = 1:env.scene().nbr_persons
if pid ~= old_pid
env.goto_person(pid);
pose = env.scene().get_projected_annot(env.frame_idx, env.camera_idx, env.person_idx);
otherbox = pose_to_bbox(pose);
ratio = bboxOverlapRatio(bbox, otherbox, 'union');
if ratio > 0.20
env.goto_person(old_pid);
return
end
end
end
env.goto_person(old_pid);
yes = 1;
return;
end