-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_task1.py
280 lines (236 loc) · 10.5 KB
/
run_task1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import argparse
import os
import json
import numpy as np
import sklearn
import ipdb
from tqdm import tqdm
import torch
import torch.nn as nn
import transformers
from transformers import AutoModel, AutoTokenizer
import pytorch_lightning as pl
from sklearn.metrics import precision_score, recall_score, f1_score
import warnings
def get_arg_parser():
parser = argparse.ArgumentParser()
parser.add_argument("--train", action="store_true")
parser.add_argument("--checkdir", type=str, default="checkpoints")
parser.add_argument("--trainset", type=str, default='../propaganda-detection/data/task1_train.json')
parser.add_argument("--devset", type=str, default='../propaganda-detection/data/task1_dev.json')
parser.add_argument("--testset", type=str, default='../propaganda-detection/data/task1_dev_test.json')
parser.add_argument("--techniques", type=str, default='../propaganda-detection/techniques_list_task1-2.txt')
parser.add_argument("--plm", type=str, default='xlm-roberta-large')
parser.add_argument("--name", type=str, default='debug')
parser.add_argument("--weights", default=None)
parser.add_argument("--bs", type=int, default=16)
parser.add_argument("--plm_lr", type=float, default=1e-5)
parser.add_argument("--lr", type=float, default=3e-4)
parser.add_argument("--ep", type=int, default=20)
parser.add_argument("--gpu", default=False)
parser.add_argument("--seed", type=int, default=2022)
args = parser.parse_args()
return args
def get_xy(data, num_techs, tech2idx, idx2tech, test=False):
if test:
x = []
for i, example in enumerate(data):
id, text = example['id'], example['text']
x.append(text)
return x, None
x, y = [], []
for i, example in enumerate(data):
id, text, labels = example['id'], example['text'], example['labels']
assert len(labels)!=0, ipdb.set_trace()
x.append(text)
y_i = np.zeros(num_techs)
for label in labels:
if label == "no technique":
continue
y_i[tech2idx[label]]=1
y_i = y_i.tolist()
y.append(y_i)
return x, y
class myDataset(torch.utils.data.Dataset):
def __init__(self, x, y, tokenizer, test=False):
super(myDataset, self).__init__()
self.test = test
self.x_tok = tokenizer(
x,
max_length=256,
padding="max_length", # truncation=True,
return_tensors='pt'
)
if not self.test:
self.y = torch.tensor(y)
assert len(self.x_tok['input_ids'])==len(self.y), ipdb.set_trace()
def __getitem__(self, idx):
if self.test:
return self.x_tok['input_ids'][idx], self.x_tok['attention_mask'][idx]
else:
return self.x_tok['input_ids'][idx], self.x_tok['attention_mask'][idx], self.y[idx]
def __len__(self):
return len(self.x_tok['input_ids'])
class myModel(nn.Module):
def __init__(self, plm, hidden_dim=768, dropout=0.3, n_classes=20):
super(myModel, self).__init__()
self.n_classes = n_classes
self.plm = plm
self.classifier = nn.Sequential(
nn.Linear(hidden_dim, n_classes),
)
def forward(self, inp):
out = self.plm(**inp)
sequence_output, pooled_output = out[0], out[1]
logits = self.classifier(pooled_output) # [bs, n_classes]
preds = (logits>=0).long()
return logits, preds
def train(model, train_loader, device, criterion, optimizers, schedulers, ep):
model.train()
train_loss, y_true, y_pred = [], [], []
for batch_idx, (inp_id, attn, y) in enumerate(train_loader):
batch = {
"input_ids": inp_id.to(device),
"attention_mask": attn.to(device),
}
y = y.to(device)
for optim in optimizers.values():
optim.zero_grad()
logits, preds = model(batch)
loss = criterion(logits, y.float())
loss.backward()
for optim in optimizers.values():
optim.step()
for scheduler in schedulers.values():
scheduler.step()
y = y.cpu().detach().numpy().tolist()
preds = preds.cpu().detach().tolist()
y_true.extend(y)
y_pred.extend(preds)
train_loss.append(loss.item())
with warnings.catch_warnings():
warnings.simplefilter("ignore")
precision = precision_score(y_true=y_true, y_pred=y_pred, labels=None, average="micro")
recall = recall_score(y_true=y_true, y_pred=y_pred, labels=None, average="micro")
f1 = f1_score(y_true=y_true, y_pred=y_pred, labels=None, average="micro")
return np.mean(train_loss), precision, recall, f1
def eval(model, dev_loader, device, criterion, ep):
model.eval()
dev_loss, y_true, y_pred = [], [], []
with torch.no_grad():
for batch_idx, (inp_id, attn, y) in enumerate(dev_loader):
batch = {
"input_ids": inp_id.to(device),
"attention_mask": attn.to(device),
}
y = y.to(device)
logits, preds = model(batch)
loss = criterion(logits, y.float())
y = y.cpu().detach().numpy().tolist()
preds = preds.cpu().detach().tolist()
y_true.extend(y)
y_pred.extend(preds)
dev_loss.append(loss.item())
with warnings.catch_warnings():
warnings.simplefilter("ignore")
precision = precision_score(y_true=y_true, y_pred=y_pred, labels=None, average="micro")
recall = recall_score(y_true=y_true, y_pred=y_pred, labels=None, average="micro")
f1 = f1_score(y_true=y_true, y_pred=y_pred, labels=None, average="micro")
return np.mean(dev_loss), precision, recall, f1
def test(model, test_loader, device):
model.eval()
y_pred = []
with torch.no_grad():
for batch_idx, (inp_id, attn) in enumerate(test_loader):
batch = {
"input_ids": inp_id.to(device),
"attention_mask": attn.to(device),
}
logits, preds = model(batch)
preds = preds.cpu().detach().tolist()
y_pred.extend(preds)
return y_pred
if __name__ == "__main__":
args = get_arg_parser()
pl.seed_everything(args.seed)
device = "cuda:0" if args.gpu else "cpu"
num_epochs = args.ep
batch_size = args.bs
if not os.path.exists(args.checkdir):
os.mkdir(args.checkdir)
with open(args.techniques, 'r', encoding='utf-8') as f:
lines = f.readlines()
all_techniques = [line.strip() for line in lines if len(line.strip())!=0]
all_techniques.remove("no technique")
num_techs = len(all_techniques)
print("%d techniques found in %s"%(num_techs, args.techniques))
tech2idx, idx2tech = {}, {}
for idx, tech in enumerate(all_techniques):
tech2idx[tech] = idx
idx2tech[idx] = tech
# model
plm = AutoModel.from_pretrained(args.plm)
plm_tokenizer = AutoTokenizer.from_pretrained(args.plm)
model = myModel(plm=plm, hidden_dim=plm.config.hidden_size, dropout=0.3, n_classes=num_techs).to(device)
# dataset
kwargs= {}
if args.train:
with open(args.trainset, 'r') as f:
train_data = json.load(f)
with open(args.devset, 'r') as f:
dev_data = json.load(f)
x_train, y_train = get_xy(train_data, num_techs, tech2idx, idx2tech)
x_dev, y_dev = get_xy(dev_data, num_techs, tech2idx, idx2tech)
trainset, devset = myDataset(x_train, y_train, plm_tokenizer), myDataset(x_dev, y_dev, plm_tokenizer)
train_loader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True, **kwargs)
dev_loader = torch.utils.data.DataLoader(devset, batch_size=batch_size, shuffle=False, **kwargs)
print("# examples in train = %d and in dev = %d"%(len(x_train), len(x_dev)))
else:
with open(args.testset, 'r') as f:
test_data = json.load(f)
x_test, y_test = get_xy(test_data, num_techs, tech2idx, idx2tech, test=True)
testset = myDataset(x_test, y_test, plm_tokenizer, test=True)
test_loader=torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, **kwargs)
print("# examples in test = %d"%(len(x_test)))
if args.weights:
print("loading model from %s"%(args.weights))
model.load_state_dict(torch.load(args.weights, map_location=device))
criterion = nn.BCEWithLogitsLoss(pos_weight=torch.Tensor([158/20]).to(device))
if args.train:
optimizers, schedulers = {}, {}
optimizers["plm_optimizer"] = torch.optim.Adam(
model.plm.parameters(), lr=args.plm_lr
)
schedulers["plm_scheduler"] = transformers.get_linear_schedule_with_warmup(
optimizers["plm_optimizer"],
0, len(x_train) * num_epochs,
# len(x_train), len(x_train) * num_epochs
)
optimizers["general_optimizer"] = torch.optim.Adam(
model.classifier.parameters(), lr=args.lr
)
schedulers["general_scheduler"] = transformers.get_linear_schedule_with_warmup(
optimizers["general_optimizer"],
0, len(x_train) * num_epochs
)
best_f1 = 0
for ep in range(num_epochs):
train_l, train_p, train_r, train_f = train(model, train_loader, device, criterion, optimizers, schedulers, ep)
dev_l, dev_p, dev_r, dev_f = eval(model, dev_loader, device, criterion, ep)
if True: # ep%5==0:
print('epoch:%d (loss, precision, recall, f1) train=(%.2f, %.2f, %.2f, %.2f) dev=(%.2f, %.2f, %.2f, %.2f)'\
%(ep, train_l, train_p, train_r, train_f, dev_l, dev_p, dev_r, dev_f))
if dev_f > best_f1:
best_f1 = dev_f
print(f"saving model") # at {best_f1:.5f} f1")
torch.save(model.state_dict(), os.path.join(args.checkdir, args.name+'.pt'))
else:
test_pred = test(model, test_loader, device)
assert len(test_pred)==len(test_data), ipdb.set_trace()
pred_json = []
for (example, pred) in zip(test_data, test_pred):
pred = [idx2tech[idx] for idx, lbl in enumerate(pred) if lbl==1]
example['labels'] = pred if len(pred) != 0 else ["no technique"]
pred_json.append(example)
with open(os.path.join(args.checkdir, args.name + '.json'), "w") as fout:
json.dump(pred_json, fout, indent=4, ensure_ascii=False)