forked from berkeleydeeprlcourse/homework
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_pg_f18.py
699 lines (583 loc) · 29.3 KB
/
train_pg_f18.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
"""
Original code from John Schulman for CS294 Deep Reinforcement Learning Spring 2017
Adapted for CS294-112 Fall 2017 by Abhishek Gupta and Joshua Achiam
Adapted for CS294-112 Fall 2018 by Michael Chang and Soroush Nasiriany
"""
import numpy as np
import tensorflow as tf
import gym
import logz
import os
import time
import inspect
from multiprocessing import Process
#============================================================================================#
# Utilities
#============================================================================================#
#========================================================================================#
# ----------PROBLEM 2----------
#========================================================================================#
def build_mlp(input_placeholder, output_size, scope, n_layers, size, activation=tf.tanh, output_activation=None):
"""
Builds a feedforward neural network
arguments:
input_placeholder: placeholder variable for the state (batch_size, input_size)
output_size: size of the output layer
scope: variable scope of the network
n_layers: number of hidden layers
size: dimension of the hidden layer
activation: activation of the hidden layers
output_activation: activation of the ouput layers
returns:
output placeholder of the network (the result of a forward pass)
Hint: use tf.layers.dense
"""
# YOUR CODE HERE
raise NotImplementedError
return output_placeholder
def pathlength(path):
return len(path["reward"])
def setup_logger(logdir, locals_):
# Configure output directory for logging
logz.configure_output_dir(logdir)
# Log experimental parameters
args = inspect.getargspec(train_PG)[0]
params = {k: locals_[k] if k in locals_ else None for k in args}
logz.save_params(params)
#============================================================================================#
# Policy Gradient
#============================================================================================#
class Agent(object):
def __init__(self, computation_graph_args, sample_trajectory_args, estimate_return_args):
super(Agent, self).__init__()
self.ob_dim = computation_graph_args['ob_dim']
self.ac_dim = computation_graph_args['ac_dim']
self.discrete = computation_graph_args['discrete']
self.size = computation_graph_args['size']
self.n_layers = computation_graph_args['n_layers']
self.learning_rate = computation_graph_args['learning_rate']
self.animate = sample_trajectory_args['animate']
self.max_path_length = sample_trajectory_args['max_path_length']
self.min_timesteps_per_batch = sample_trajectory_args['min_timesteps_per_batch']
self.gamma = estimate_return_args['gamma']
self.reward_to_go = estimate_return_args['reward_to_go']
self.nn_baseline = estimate_return_args['nn_baseline']
self.normalize_advantages = estimate_return_args['normalize_advantages']
def init_tf_sess(self):
tf_config = tf.ConfigProto(inter_op_parallelism_threads=1, intra_op_parallelism_threads=1)
self.sess = tf.Session(config=tf_config)
self.sess.__enter__() # equivalent to `with self.sess:`
tf.global_variables_initializer().run() #pylint: disable=E1101
#========================================================================================#
# ----------PROBLEM 2----------
#========================================================================================#
def define_placeholders(self):
"""
Placeholders for batch batch observations / actions / advantages in policy gradient
loss function.
See Agent.build_computation_graph for notation
returns:
sy_ob_no: placeholder for observations
sy_ac_na: placeholder for actions
sy_adv_n: placeholder for advantages
"""
raise NotImplementedError
sy_ob_no = tf.placeholder(shape=[None, self.ob_dim], name="ob", dtype=tf.float32)
if self.discrete:
sy_ac_na = tf.placeholder(shape=[None], name="ac", dtype=tf.int32)
else:
sy_ac_na = tf.placeholder(shape=[None, self.ac_dim], name="ac", dtype=tf.float32)
# YOUR CODE HERE
sy_adv_n = None
return sy_ob_no, sy_ac_na, sy_adv_n
#========================================================================================#
# ----------PROBLEM 2----------
#========================================================================================#
def policy_forward_pass(self, sy_ob_no):
""" Constructs the symbolic operation for the policy network outputs,
which are the parameters of the policy distribution p(a|s)
arguments:
sy_ob_no: (batch_size, self.ob_dim)
returns:
the parameters of the policy.
if discrete, the parameters are the logits of a categorical distribution
over the actions
sy_logits_na: (batch_size, self.ac_dim)
if continuous, the parameters are a tuple (mean, log_std) of a Gaussian
distribution over actions. log_std should just be a trainable
variable, not a network output.
sy_mean: (batch_size, self.ac_dim)
sy_logstd: (self.ac_dim,)
Hint: use the 'build_mlp' function to output the logits (in the discrete case)
and the mean (in the continuous case).
Pass in self.n_layers for the 'n_layers' argument, and
pass in self.size for the 'size' argument.
"""
raise NotImplementedError
if self.discrete:
# YOUR_CODE_HERE
sy_logits_na = None
return sy_logits_na
else:
# YOUR_CODE_HERE
sy_mean = None
sy_logstd = None
return (sy_mean, sy_logstd)
#========================================================================================#
# ----------PROBLEM 2----------
#========================================================================================#
def sample_action(self, policy_parameters):
""" Constructs a symbolic operation for stochastically sampling from the policy
distribution
arguments:
policy_parameters
if discrete: logits of a categorical distribution over actions
sy_logits_na: (batch_size, self.ac_dim)
if continuous: (mean, log_std) of a Gaussian distribution over actions
sy_mean: (batch_size, self.ac_dim)
sy_logstd: (self.ac_dim,)
returns:
sy_sampled_ac:
if discrete: (batch_size,)
if continuous: (batch_size, self.ac_dim)
Hint: for the continuous case, use the reparameterization trick:
The output from a Gaussian distribution with mean 'mu' and std 'sigma' is
mu + sigma * z, z ~ N(0, I)
This reduces the problem to just sampling z. (Hint: use tf.random_normal!)
"""
raise NotImplementedError
if self.discrete:
sy_logits_na = policy_parameters
# YOUR_CODE_HERE
sy_sampled_ac = None
else:
sy_mean, sy_logstd = policy_parameters
# YOUR_CODE_HERE
sy_sampled_ac = None
return sy_sampled_ac
#========================================================================================#
# ----------PROBLEM 2----------
#========================================================================================#
def get_log_prob(self, policy_parameters, sy_ac_na):
""" Constructs a symbolic operation for computing the log probability of a set of actions
that were actually taken according to the policy
arguments:
policy_parameters
if discrete: logits of a categorical distribution over actions
sy_logits_na: (batch_size, self.ac_dim)
if continuous: (mean, log_std) of a Gaussian distribution over actions
sy_mean: (batch_size, self.ac_dim)
sy_logstd: (self.ac_dim,)
sy_ac_na:
if discrete: (batch_size,)
if continuous: (batch_size, self.ac_dim)
returns:
sy_logprob_n: (batch_size)
Hint:
For the discrete case, use the log probability under a categorical distribution.
For the continuous case, use the log probability under a multivariate gaussian.
"""
raise NotImplementedError
if self.discrete:
sy_logits_na = policy_parameters
# YOUR_CODE_HERE
sy_logprob_n = None
else:
sy_mean, sy_logstd = policy_parameters
# YOUR_CODE_HERE
sy_logprob_n = None
return sy_logprob_n
def build_computation_graph(self):
"""
Notes on notation:
Symbolic variables have the prefix sy_, to distinguish them from the numerical values
that are computed later in the function
Prefixes and suffixes:
ob - observation
ac - action
_no - this tensor should have shape (batch self.size /n/, observation dim)
_na - this tensor should have shape (batch self.size /n/, action dim)
_n - this tensor should have shape (batch self.size /n/)
Note: batch self.size /n/ is defined at runtime, and until then, the shape for that axis
is None
----------------------------------------------------------------------------------
loss: a function of self.sy_logprob_n and self.sy_adv_n that we will differentiate
to get the policy gradient.
"""
self.sy_ob_no, self.sy_ac_na, self.sy_adv_n = self.define_placeholders()
# The policy takes in an observation and produces a distribution over the action space
self.policy_parameters = self.policy_forward_pass(self.sy_ob_no)
# We can sample actions from this action distribution.
# This will be called in Agent.sample_trajectory() where we generate a rollout.
self.sy_sampled_ac = self.sample_action(self.policy_parameters)
# We can also compute the logprob of the actions that were actually taken by the policy
# This is used in the loss function.
self.sy_logprob_n = self.get_log_prob(self.policy_parameters, self.sy_ac_na)
#========================================================================================#
# ----------PROBLEM 2----------
# Loss Function and Training Operation
#========================================================================================#
loss = None # YOUR CODE HERE
self.update_op = tf.train.AdamOptimizer(self.learning_rate).minimize(loss)
#========================================================================================#
# ----------PROBLEM 6----------
# Optional Baseline
#
# Define placeholders for targets, a loss function and an update op for fitting a
# neural network baseline. These will be used to fit the neural network baseline.
#========================================================================================#
if self.nn_baseline:
raise NotImplementedError
self.baseline_prediction = tf.squeeze(build_mlp(
self.sy_ob_no,
1,
"nn_baseline",
n_layers=self.n_layers,
size=self.size))
# YOUR_CODE_HERE
self.sy_target_n = None
baseline_loss = None
self.baseline_update_op = tf.train.AdamOptimizer(self.learning_rate).minimize(baseline_loss)
def sample_trajectories(self, itr, env):
# Collect paths until we have enough timesteps
timesteps_this_batch = 0
paths = []
while True:
animate_this_episode=(len(paths)==0 and (itr % 10 == 0) and self.animate)
path = self.sample_trajectory(env, animate_this_episode)
paths.append(path)
timesteps_this_batch += pathlength(path)
if timesteps_this_batch > self.min_timesteps_per_batch:
break
return paths, timesteps_this_batch
def sample_trajectory(self, env, animate_this_episode):
ob = env.reset()
obs, acs, rewards = [], [], []
steps = 0
while True:
if animate_this_episode:
env.render()
time.sleep(0.1)
obs.append(ob)
#====================================================================================#
# ----------PROBLEM 3----------
#====================================================================================#
raise NotImplementedError
ac = None # YOUR CODE HERE
ac = ac[0]
acs.append(ac)
ob, rew, done, _ = env.step(ac)
rewards.append(rew)
steps += 1
if done or steps > self.max_path_length:
break
path = {"observation" : np.array(obs, dtype=np.float32),
"reward" : np.array(rewards, dtype=np.float32),
"action" : np.array(acs, dtype=np.float32)}
return path
#====================================================================================#
# ----------PROBLEM 3----------
#====================================================================================#
def sum_of_rewards(self, re_n):
"""
Monte Carlo estimation of the Q function.
let sum_of_path_lengths be the sum of the lengths of the paths sampled from
Agent.sample_trajectories
let num_paths be the number of paths sampled from Agent.sample_trajectories
arguments:
re_n: length: num_paths. Each element in re_n is a numpy array
containing the rewards for the particular path
returns:
q_n: shape: (sum_of_path_lengths). A single vector for the estimated q values
whose length is the sum of the lengths of the paths
----------------------------------------------------------------------------------
Your code should construct numpy arrays for Q-values which will be used to compute
advantages (which will in turn be fed to the placeholder you defined in
Agent.define_placeholders).
Recall that the expression for the policy gradient PG is
PG = E_{tau} [sum_{t=0}^T grad log pi(a_t|s_t) * (Q_t - b_t )]
where
tau=(s_0, a_0, ...) is a trajectory,
Q_t is the Q-value at time t, Q^{pi}(s_t, a_t),
and b_t is a baseline which may depend on s_t.
You will write code for two cases, controlled by the flag 'reward_to_go':
Case 1: trajectory-based PG
(reward_to_go = False)
Instead of Q^{pi}(s_t, a_t), we use the total discounted reward summed over
entire trajectory (regardless of which time step the Q-value should be for).
For this case, the policy gradient estimator is
E_{tau} [sum_{t=0}^T grad log pi(a_t|s_t) * Ret(tau)]
where
Ret(tau) = sum_{t'=0}^T gamma^t' r_{t'}.
Thus, you should compute
Q_t = Ret(tau)
Case 2: reward-to-go PG
(reward_to_go = True)
Here, you estimate Q^{pi}(s_t, a_t) by the discounted sum of rewards starting
from time step t. Thus, you should compute
Q_t = sum_{t'=t}^T gamma^(t'-t) * r_{t'}
Store the Q-values for all timesteps and all trajectories in a variable 'q_n',
like the 'ob_no' and 'ac_na' above.
"""
# YOUR_CODE_HERE
if self.reward_to_go:
raise NotImplementedError
else:
raise NotImplementedError
return q_n
def compute_advantage(self, ob_no, q_n):
"""
Computes advantages by (possibly) subtracting a baseline from the estimated Q values
let sum_of_path_lengths be the sum of the lengths of the paths sampled from
Agent.sample_trajectories
let num_paths be the number of paths sampled from Agent.sample_trajectories
arguments:
ob_no: shape: (sum_of_path_lengths, ob_dim)
q_n: shape: (sum_of_path_lengths). A single vector for the estimated q values
whose length is the sum of the lengths of the paths
returns:
adv_n: shape: (sum_of_path_lengths). A single vector for the estimated
advantages whose length is the sum of the lengths of the paths
"""
#====================================================================================#
# ----------PROBLEM 6----------
# Computing Baselines
#====================================================================================#
if self.nn_baseline:
# If nn_baseline is True, use your neural network to predict reward-to-go
# at each timestep for each trajectory, and save the result in a variable 'b_n'
# like 'ob_no', 'ac_na', and 'q_n'.
#
# Hint #bl1: rescale the output from the nn_baseline to match the statistics
# (mean and std) of the current batch of Q-values. (Goes with Hint
# #bl2 in Agent.update_parameters.
raise NotImplementedError
b_n = None # YOUR CODE HERE
adv_n = q_n - b_n
else:
adv_n = q_n.copy()
return adv_n
def estimate_return(self, ob_no, re_n):
"""
Estimates the returns over a set of trajectories.
let sum_of_path_lengths be the sum of the lengths of the paths sampled from
Agent.sample_trajectories
let num_paths be the number of paths sampled from Agent.sample_trajectories
arguments:
ob_no: shape: (sum_of_path_lengths, ob_dim)
re_n: length: num_paths. Each element in re_n is a numpy array
containing the rewards for the particular path
returns:
q_n: shape: (sum_of_path_lengths). A single vector for the estimated q values
whose length is the sum of the lengths of the paths
adv_n: shape: (sum_of_path_lengths). A single vector for the estimated
advantages whose length is the sum of the lengths of the paths
"""
q_n = self.sum_of_rewards(re_n)
adv_n = self.compute_advantage(ob_no, q_n)
#====================================================================================#
# ----------PROBLEM 3----------
# Advantage Normalization
#====================================================================================#
if self.normalize_advantages:
# On the next line, implement a trick which is known empirically to reduce variance
# in policy gradient methods: normalize adv_n to have mean zero and std=1.
raise NotImplementedError
adv_n = None # YOUR_CODE_HERE
return q_n, adv_n
def update_parameters(self, ob_no, ac_na, q_n, adv_n):
"""
Update the parameters of the policy and (possibly) the neural network baseline,
which is trained to approximate the value function.
arguments:
ob_no: shape: (sum_of_path_lengths, ob_dim)
ac_na: shape: (sum_of_path_lengths).
q_n: shape: (sum_of_path_lengths). A single vector for the estimated q values
whose length is the sum of the lengths of the paths
adv_n: shape: (sum_of_path_lengths). A single vector for the estimated
advantages whose length is the sum of the lengths of the paths
returns:
nothing
"""
#====================================================================================#
# ----------PROBLEM 6----------
# Optimizing Neural Network Baseline
#====================================================================================#
if self.nn_baseline:
# If a neural network baseline is used, set up the targets and the inputs for the
# baseline.
#
# Fit it to the current batch in order to use for the next iteration. Use the
# baseline_update_op you defined earlier.
#
# Hint #bl2: Instead of trying to target raw Q-values directly, rescale the
# targets to have mean zero and std=1. (Goes with Hint #bl1 in
# Agent.compute_advantage.)
# YOUR_CODE_HERE
raise NotImplementedError
target_n = None
#====================================================================================#
# ----------PROBLEM 3----------
# Performing the Policy Update
#====================================================================================#
# Call the update operation necessary to perform the policy gradient update based on
# the current batch of rollouts.
#
# For debug purposes, you may wish to save the value of the loss function before
# and after an update, and then log them below.
# YOUR_CODE_HERE
raise NotImplementedError
def train_PG(
exp_name,
env_name,
n_iter,
gamma,
min_timesteps_per_batch,
max_path_length,
learning_rate,
reward_to_go,
animate,
logdir,
normalize_advantages,
nn_baseline,
seed,
n_layers,
size):
start = time.time()
#========================================================================================#
# Set Up Logger
#========================================================================================#
setup_logger(logdir, locals())
#========================================================================================#
# Set Up Env
#========================================================================================#
# Make the gym environment
env = gym.make(env_name)
# Set random seeds
tf.set_random_seed(seed)
np.random.seed(seed)
env.seed(seed)
# Maximum length for episodes
max_path_length = max_path_length or env.spec.max_episode_steps
# Is this env continuous, or self.discrete?
discrete = isinstance(env.action_space, gym.spaces.Discrete)
# Observation and action sizes
ob_dim = env.observation_space.shape[0]
ac_dim = env.action_space.n if discrete else env.action_space.shape[0]
#========================================================================================#
# Initialize Agent
#========================================================================================#
computation_graph_args = {
'n_layers': n_layers,
'ob_dim': ob_dim,
'ac_dim': ac_dim,
'discrete': discrete,
'size': size,
'learning_rate': learning_rate,
}
sample_trajectory_args = {
'animate': animate,
'max_path_length': max_path_length,
'min_timesteps_per_batch': min_timesteps_per_batch,
}
estimate_return_args = {
'gamma': gamma,
'reward_to_go': reward_to_go,
'nn_baseline': nn_baseline,
'normalize_advantages': normalize_advantages,
}
agent = Agent(computation_graph_args, sample_trajectory_args, estimate_return_args)
# build computation graph
agent.build_computation_graph()
# tensorflow: config, session, variable initialization
agent.init_tf_sess()
#========================================================================================#
# Training Loop
#========================================================================================#
total_timesteps = 0
for itr in range(n_iter):
print("********** Iteration %i ************"%itr)
paths, timesteps_this_batch = agent.sample_trajectories(itr, env)
total_timesteps += timesteps_this_batch
# Build arrays for observation, action for the policy gradient update by concatenating
# across paths
ob_no = np.concatenate([path["observation"] for path in paths])
ac_na = np.concatenate([path["action"] for path in paths])
re_n = [path["reward"] for path in paths]
q_n, adv_n = agent.estimate_return(ob_no, re_n)
agent.update_parameters(ob_no, ac_na, q_n, adv_n)
# Log diagnostics
returns = [path["reward"].sum() for path in paths]
ep_lengths = [pathlength(path) for path in paths]
logz.log_tabular("Time", time.time() - start)
logz.log_tabular("Iteration", itr)
logz.log_tabular("AverageReturn", np.mean(returns))
logz.log_tabular("StdReturn", np.std(returns))
logz.log_tabular("MaxReturn", np.max(returns))
logz.log_tabular("MinReturn", np.min(returns))
logz.log_tabular("EpLenMean", np.mean(ep_lengths))
logz.log_tabular("EpLenStd", np.std(ep_lengths))
logz.log_tabular("TimestepsThisBatch", timesteps_this_batch)
logz.log_tabular("TimestepsSoFar", total_timesteps)
logz.dump_tabular()
logz.pickle_tf_vars()
def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('env_name', type=str)
parser.add_argument('--exp_name', type=str, default='vpg')
parser.add_argument('--render', action='store_true')
parser.add_argument('--discount', type=float, default=1.0)
parser.add_argument('--n_iter', '-n', type=int, default=100)
parser.add_argument('--batch_size', '-b', type=int, default=1000)
parser.add_argument('--ep_len', '-ep', type=float, default=-1.)
parser.add_argument('--learning_rate', '-lr', type=float, default=5e-3)
parser.add_argument('--reward_to_go', '-rtg', action='store_true')
parser.add_argument('--dont_normalize_advantages', '-dna', action='store_true')
parser.add_argument('--nn_baseline', '-bl', action='store_true')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--n_experiments', '-e', type=int, default=1)
parser.add_argument('--n_layers', '-l', type=int, default=2)
parser.add_argument('--size', '-s', type=int, default=64)
args = parser.parse_args()
if not(os.path.exists('data')):
os.makedirs('data')
logdir = args.exp_name + '_' + args.env_name + '_' + time.strftime("%d-%m-%Y_%H-%M-%S")
logdir = os.path.join('data', logdir)
if not(os.path.exists(logdir)):
os.makedirs(logdir)
max_path_length = args.ep_len if args.ep_len > 0 else None
processes = []
for e in range(args.n_experiments):
seed = args.seed + 10*e
print('Running experiment with seed %d'%seed)
def train_func():
train_PG(
exp_name=args.exp_name,
env_name=args.env_name,
n_iter=args.n_iter,
gamma=args.discount,
min_timesteps_per_batch=args.batch_size,
max_path_length=max_path_length,
learning_rate=args.learning_rate,
reward_to_go=args.reward_to_go,
animate=args.render,
logdir=os.path.join(logdir,'%d'%seed),
normalize_advantages=not(args.dont_normalize_advantages),
nn_baseline=args.nn_baseline,
seed=seed,
n_layers=args.n_layers,
size=args.size
)
# # Awkward hacky process runs, because Tensorflow does not like
# # repeatedly calling train_PG in the same thread.
p = Process(target=train_func, args=tuple())
p.start()
processes.append(p)
# if you comment in the line below, then the loop will block
# until this process finishes
# p.join()
for p in processes:
p.join()
if __name__ == "__main__":
main()