forked from berkeleydeeprlcourse/homework
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlunar_lander.py
474 lines (404 loc) · 17.6 KB
/
lunar_lander.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import sys, math
import numpy as np
import Box2D
from Box2D.b2 import (edgeShape, circleShape, fixtureDef, polygonShape, revoluteJointDef, contactListener)
import gym
from gym import spaces
from gym.utils import seeding
import pyglet
from copy import copy
# Rocket trajectory optimization is a classic topic in Optimal Control.
#
# According to Pontryagin's maximum principle it's optimal to fire engine full throttle or
# turn it off. That's the reason this environment is OK to have discreet actions (engine on or off).
#
# Landing pad is always at coordinates (0,0). Coordinates are the first two numbers in state vector.
# Reward for moving from the top of the screen to landing pad and zero speed is about 100..140 points.
# If lander moves away from landing pad it loses reward back. Episode finishes if the lander crashes or
# comes to rest, receiving additional -100 or +100 points. Each leg ground contact is +10. Firing main
# engine is -0.3 points each frame. Solved is 200 points.
#
# Landing outside landing pad is possible. Fuel is infinite, so an agent can learn to fly and then land
# on its first attempt. Please see source code for details.
#
# Too see heuristic landing, run:
#
# python gym/envs/box2d/lunar_lander.py
#
# To play yourself, run:
#
# python examples/agents/keyboard_agent.py LunarLander-v0
#
# Created by Oleg Klimov. Licensed on the same terms as the rest of OpenAI Gym.
# Modified by Sid Reddy ([email protected]) on 8/14/18
#
# Changelog:
# - different discretization scheme for actions
# - different terminal rewards
# - different observations
# - randomized landing site
#
# You can create an env object using `gym.make('LunarLanderContinuous-v2')`,
# and it will use the discrete action space specified in this file, even though
# the env is called "Continuous".
#
# A good agent should be able to achieve >150 reward.
MAX_NUM_STEPS = 1000
N_OBS_DIM = 9
N_ACT_DIM = 6 # num discrete actions
FPS = 50
SCALE = 30.0 # affects how fast-paced the game is, forces should be adjusted as well
MAIN_ENGINE_POWER = 13.0
SIDE_ENGINE_POWER = 0.6
INITIAL_RANDOM = 1000.0 # Set 1500 to make game harder
LANDER_POLY =[
(-14,+17), (-17,0), (-17,-10),
(+17,-10), (+17,0), (+14,+17)
]
LEG_AWAY = 20
LEG_DOWN = 18
LEG_W, LEG_H = 2, 8
LEG_SPRING_TORQUE = 40 # 40 is too difficult for human players, 400 a bit easier
SIDE_ENGINE_HEIGHT = 14.0
SIDE_ENGINE_AWAY = 12.0
VIEWPORT_W = 600
VIEWPORT_H = 400
THROTTLE_MAG = 0.75 # discretized 'on' value for thrusters
NOOP = 1 # don't fire main engine, don't steer
def disc_to_cont(action): # discrete action -> continuous action
if type(action) == np.ndarray:
return action
# main engine
if action < 3:
m = -THROTTLE_MAG
elif action < 6:
m = THROTTLE_MAG
else:
raise ValueError
# steering
if action % 3 == 0:
s = -THROTTLE_MAG
elif action % 3 == 1:
s = 0
else:
s = THROTTLE_MAG
return np.array([m, s])
class ContactDetector(contactListener):
def __init__(self, env):
contactListener.__init__(self)
self.env = env
def BeginContact(self, contact):
if self.env.lander==contact.fixtureA.body or self.env.lander==contact.fixtureB.body:
self.env.game_over = True
for i in range(2):
if self.env.legs[i] in [contact.fixtureA.body, contact.fixtureB.body]:
self.env.legs[i].ground_contact = True
def EndContact(self, contact):
for i in range(2):
if self.env.legs[i] in [contact.fixtureA.body, contact.fixtureB.body]:
self.env.legs[i].ground_contact = False
class LunarLander(gym.Env):
metadata = {
'render.modes': ['human', 'rgb_array'],
'video.frames_per_second' : FPS
}
continuous = False
def __init__(self):
self._seed()
self.viewer = None
self.world = Box2D.b2World()
self.moon = None
self.lander = None
self.particles = []
self.prev_reward = None
high = np.array([np.inf]*N_OBS_DIM) # useful range is -1 .. +1, but spikes can be higher
self.observation_space = spaces.Box(-high, high)
self.action_space = spaces.Discrete(N_ACT_DIM)
self.curr_step = None
self._reset()
def _seed(self, seed=None):
self.np_random, seed = seeding.np_random(seed)
return [seed]
def _destroy(self):
if not self.moon: return
self.world.contactListener = None
self._clean_particles(True)
self.world.DestroyBody(self.moon)
self.moon = None
self.world.DestroyBody(self.lander)
self.lander = None
self.world.DestroyBody(self.legs[0])
self.world.DestroyBody(self.legs[1])
def _reset(self):
self.curr_step = 0
self._destroy()
self.world.contactListener_keepref = ContactDetector(self)
self.world.contactListener = self.world.contactListener_keepref
self.game_over = False
self.prev_shaping = None
W = VIEWPORT_W/SCALE
H = VIEWPORT_H/SCALE
# terrain
CHUNKS = 11
height = self.np_random.uniform(0, H/2, size=(CHUNKS+1,) )
chunk_x = [W/(CHUNKS-1)*i for i in range(CHUNKS)]
# randomize helipad x-coord
helipad_chunk = np.random.choice(range(1, CHUNKS-1))
self.helipad_x1 = chunk_x[helipad_chunk-1]
self.helipad_x2 = chunk_x[helipad_chunk+1]
self.helipad_y = H/4
height[helipad_chunk-2] = self.helipad_y
height[helipad_chunk-1] = self.helipad_y
height[helipad_chunk+0] = self.helipad_y
height[helipad_chunk+1] = self.helipad_y
height[helipad_chunk+2] = self.helipad_y
smooth_y = [0.33*(height[i-1] + height[i+0] + height[i+1]) for i in range(CHUNKS)]
self.moon = self.world.CreateStaticBody( shapes=edgeShape(vertices=[(0, 0), (W, 0)]) )
self.sky_polys = []
for i in range(CHUNKS-1):
p1 = (chunk_x[i], smooth_y[i])
p2 = (chunk_x[i+1], smooth_y[i+1])
self.moon.CreateEdgeFixture(
vertices=[p1,p2],
density=0,
friction=0.1)
self.sky_polys.append( [p1, p2, (p2[0],H), (p1[0],H)] )
self.moon.color1 = (0.0,0.0,0.0)
self.moon.color2 = (0.0,0.0,0.0)
initial_y = VIEWPORT_H/SCALE#*0.75
self.lander = self.world.CreateDynamicBody(
position = (VIEWPORT_W/SCALE/2, initial_y),
angle=0.0,
fixtures = fixtureDef(
shape=polygonShape(vertices=[ (x/SCALE,y/SCALE) for x,y in LANDER_POLY ]),
density=5.0,
friction=0.1,
categoryBits=0x0010,
maskBits=0x001, # collide only with ground
restitution=0.0) # 0.99 bouncy
)
self.lander.color1 = (0.5,0.4,0.9)
self.lander.color2 = (0.3,0.3,0.5)
self.lander.ApplyForceToCenter( (
self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM),
self.np_random.uniform(-INITIAL_RANDOM, INITIAL_RANDOM)
), True)
self.legs = []
for i in [-1,+1]:
leg = self.world.CreateDynamicBody(
position = (VIEWPORT_W/SCALE/2 - i*LEG_AWAY/SCALE, initial_y),
angle = (i*0.05),
fixtures = fixtureDef(
shape=polygonShape(box=(LEG_W/SCALE, LEG_H/SCALE)),
density=1.0,
restitution=0.0,
categoryBits=0x0020,
maskBits=0x001)
)
leg.ground_contact = False
leg.color1 = (0.5,0.4,0.9)
leg.color2 = (0.3,0.3,0.5)
rjd = revoluteJointDef(
bodyA=self.lander,
bodyB=leg,
localAnchorA=(0, 0),
localAnchorB=(i*LEG_AWAY/SCALE, LEG_DOWN/SCALE),
enableMotor=True,
enableLimit=True,
maxMotorTorque=LEG_SPRING_TORQUE,
motorSpeed=+0.3*i # low enough not to jump back into the sky
)
if i==-1:
rjd.lowerAngle = +0.9 - 0.5 # Yes, the most esoteric numbers here, angles legs have freedom to travel within
rjd.upperAngle = +0.9
else:
rjd.lowerAngle = -0.9
rjd.upperAngle = -0.9 + 0.5
leg.joint = self.world.CreateJoint(rjd)
self.legs.append(leg)
self.drawlist = [self.lander] + self.legs
return self._step(NOOP)[0]
def _create_particle(self, mass, x, y, ttl):
p = self.world.CreateDynamicBody(
position = (x,y),
angle=0.0,
fixtures = fixtureDef(
shape=circleShape(radius=2/SCALE, pos=(0,0)),
density=mass,
friction=0.1,
categoryBits=0x0100,
maskBits=0x001, # collide only with ground
restitution=0.3)
)
p.ttl = ttl
self.particles.append(p)
self._clean_particles(False)
return p
def _clean_particles(self, all):
while self.particles and (all or self.particles[0].ttl<0):
self.world.DestroyBody(self.particles.pop(0))
def _step(self, action):
#assert self.action_space.contains(action), "%r (%s) invalid " % (action,type(action))
if type(action) in [int, np.int64]:
action = disc_to_cont(action)
# Engines
tip = (math.sin(self.lander.angle), math.cos(self.lander.angle))
side = (-tip[1], tip[0]);
dispersion = [self.np_random.uniform(-1.0, +1.0) / SCALE for _ in range(2)]
m_power = 0.0
if (self.continuous and action[0] > 0.0) or (not self.continuous and action==2):
# Main engine
if self.continuous:
m_power = (np.clip(action[0], 0.0,1.0) + 1.0)*0.5 # 0.5..1.0
assert m_power>=0.5 and m_power <= 1.0
else:
m_power = 1.0
ox = tip[0]*(4/SCALE + 2*dispersion[0]) + side[0]*dispersion[1] # 4 is move a bit downwards, +-2 for randomness
oy = -tip[1]*(4/SCALE + 2*dispersion[0]) - side[1]*dispersion[1]
impulse_pos = (self.lander.position[0] + ox, self.lander.position[1] + oy)
p = self._create_particle(3.5, impulse_pos[0], impulse_pos[1], m_power) # particles are just a decoration, 3.5 is here to make particle speed adequate
p.ApplyLinearImpulse( ( ox*MAIN_ENGINE_POWER*m_power, oy*MAIN_ENGINE_POWER*m_power), impulse_pos, True)
self.lander.ApplyLinearImpulse( (-ox*MAIN_ENGINE_POWER*m_power, -oy*MAIN_ENGINE_POWER*m_power), impulse_pos, True)
s_power = 0.0
if (self.continuous and np.abs(action[1]) > 0.5) or (not self.continuous and action in [1,3]):
# Orientation engines
if self.continuous:
direction = np.sign(action[1])
s_power = np.clip(np.abs(action[1]), 0.5,1.0)
assert s_power>=0.5 and s_power <= 1.0
else:
direction = action-2
s_power = 1.0
ox = tip[0]*dispersion[0] + side[0]*(3*dispersion[1]+direction*SIDE_ENGINE_AWAY/SCALE)
oy = -tip[1]*dispersion[0] - side[1]*(3*dispersion[1]+direction*SIDE_ENGINE_AWAY/SCALE)
impulse_pos = (self.lander.position[0] + ox - tip[0]*17/SCALE, self.lander.position[1] + oy + tip[1]*SIDE_ENGINE_HEIGHT/SCALE)
p = self._create_particle(0.7, impulse_pos[0], impulse_pos[1], s_power)
p.ApplyLinearImpulse( ( ox*SIDE_ENGINE_POWER*s_power, oy*SIDE_ENGINE_POWER*s_power), impulse_pos, True)
self.lander.ApplyLinearImpulse( (-ox*SIDE_ENGINE_POWER*s_power, -oy*SIDE_ENGINE_POWER*s_power), impulse_pos, True)
# perform normal update
self.world.Step(1.0/FPS, 6*30, 2*30)
pos = self.lander.position
vel = self.lander.linearVelocity
helipad_x = (self.helipad_x1 + self.helipad_x2) / 2
state = [
(pos.x - VIEWPORT_W/SCALE/2) / (VIEWPORT_W/SCALE/2),
(pos.y - (self.helipad_y+LEG_DOWN/SCALE)) / (VIEWPORT_W/SCALE/2),
vel.x*(VIEWPORT_W/SCALE/2)/FPS,
vel.y*(VIEWPORT_H/SCALE/2)/FPS,
self.lander.angle,
20.0*self.lander.angularVelocity/FPS,
1.0 if self.legs[0].ground_contact else 0.0,
1.0 if self.legs[1].ground_contact else 0.0,
(helipad_x - VIEWPORT_W/SCALE/2) / (VIEWPORT_W/SCALE/2)
]
assert len(state)==N_OBS_DIM
self.curr_step += 1
reward = 0
shaping = 0
dx = (pos.x - helipad_x) / (VIEWPORT_W/SCALE/2)
shaping += -100*np.sqrt(state[2]*state[2] + state[3]*state[3]) - 100*abs(state[4])
shaping += -100*np.sqrt(dx*dx + state[1]*state[1]) + 10*state[6] + 10*state[7]
if self.prev_shaping is not None:
reward = shaping - self.prev_shaping
self.prev_shaping = shaping
reward -= m_power*0.30 # less fuel spent is better, about -30 for heurisic landing
reward -= s_power*0.03
oob = abs(state[0]) >= 1.0
timeout = self.curr_step >= MAX_NUM_STEPS
not_awake = not self.lander.awake
at_site = pos.x >= self.helipad_x1 and pos.x <= self.helipad_x2 and state[1] <= 0
grounded = self.legs[0].ground_contact and self.legs[1].ground_contact
landed = at_site and grounded
done = self.game_over or oob or not_awake or timeout or landed
if done:
if self.game_over or oob:
reward = -100
self.lander.color1 = (255,0,0)
elif at_site:
reward = +100
self.lander.color1 = (0,255,0)
elif timeout:
self.lander.color1 = (255,0,0)
info = {}
return np.array(state), reward, done, info
def _render(self, mode='human', close=False):
if close:
if self.viewer is not None:
self.viewer.close()
self.viewer = None
return
from gym.envs.classic_control import rendering
if self.viewer is None:
self.viewer = rendering.Viewer(VIEWPORT_W, VIEWPORT_H)
self.viewer.set_bounds(0, VIEWPORT_W/SCALE, 0, VIEWPORT_H/SCALE)
for obj in self.particles:
obj.ttl -= 0.15
obj.color1 = (max(0.2,0.2+obj.ttl), max(0.2,0.5*obj.ttl), max(0.2,0.5*obj.ttl))
obj.color2 = (max(0.2,0.2+obj.ttl), max(0.2,0.5*obj.ttl), max(0.2,0.5*obj.ttl))
self._clean_particles(False)
for p in self.sky_polys:
self.viewer.draw_polygon(p, color=(0,0,0))
for obj in self.particles + self.drawlist:
for f in obj.fixtures:
trans = f.body.transform
if type(f.shape) is circleShape:
t = rendering.Transform(translation=trans*f.shape.pos)
self.viewer.draw_circle(f.shape.radius, 20, color=obj.color1).add_attr(t)
self.viewer.draw_circle(f.shape.radius, 20, color=obj.color2, filled=False, linewidth=2).add_attr(t)
else:
path = [trans*v for v in f.shape.vertices]
self.viewer.draw_polygon(path, color=obj.color1)
path.append(path[0])
self.viewer.draw_polyline(path, color=obj.color2, linewidth=2)
for x in [self.helipad_x1, self.helipad_x2]:
flagy1 = self.helipad_y
flagy2 = flagy1 + 50/SCALE
self.viewer.draw_polyline( [(x, flagy1), (x, flagy2)], color=(1,1,1) )
self.viewer.draw_polygon( [(x, flagy2), (x, flagy2-10/SCALE), (x+25/SCALE, flagy2-5/SCALE)], color=(0.8,0.8,0) )
clock_prog = self.curr_step / MAX_NUM_STEPS
self.viewer.draw_polyline( [(0, 0.05*VIEWPORT_H/SCALE), (clock_prog*VIEWPORT_W/SCALE, 0.05*VIEWPORT_H/SCALE)], color=(255,0,0), linewidth=5 )
return self.viewer.render(return_rgb_array = mode=='rgb_array')
class LunarLanderContinuous(LunarLander):
continuous = True
def heuristic(env, s):
# Heuristic for:
# 1. Testing.
# 2. Demonstration rollout.
angle_targ = s[0]*0.5 + s[2]*1.0 # angle should point towards center (s[0] is horizontal coordinate, s[2] hor speed)
if angle_targ > 0.4: angle_targ = 0.4 # more than 0.4 radians (22 degrees) is bad
if angle_targ < -0.4: angle_targ = -0.4
hover_targ = 0.55*np.abs(s[0]) # target y should be proporional to horizontal offset
# PID controller: s[4] angle, s[5] angularSpeed
angle_todo = (angle_targ - s[4])*0.5 - (s[5])*1.0
#print("angle_targ=%0.2f, angle_todo=%0.2f" % (angle_targ, angle_todo))
# PID controller: s[1] vertical coordinate s[3] vertical speed
hover_todo = (hover_targ - s[1])*0.5 - (s[3])*0.5
#print("hover_targ=%0.2f, hover_todo=%0.2f" % (hover_targ, hover_todo))
if s[6] or s[7]: # legs have contact
angle_todo = 0
hover_todo = -(s[3])*0.5 # override to reduce fall speed, that's all we need after contact
if env.continuous:
a = np.array( [hover_todo*20 - 1, -angle_todo*20] )
a = np.clip(a, -1, +1)
else:
a = 0
if hover_todo > np.abs(angle_todo) and hover_todo > 0.05: a = 2
elif angle_todo < -0.05: a = 3
elif angle_todo > +0.05: a = 1
return a
if __name__=="__main__":
#env = LunarLander()
env = LunarLanderContinuous()
s = env.reset()
total_reward = 0
steps = 0
while True:
a = heuristic(env, s)
s, r, done, info = env.step(a)
env.render()
total_reward += r
if steps % 20 == 0 or done:
print(["{:+0.2f}".format(x) for x in s])
print("step {} total_reward {:+0.2f}".format(steps, total_reward))
steps += 1
if done: break