forked from jbhuang0604/CF2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_CF2.m
66 lines (54 loc) · 2.34 KB
/
run_CF2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
function results = run_CF2(seq, res_path, bSaveImage)
% RUN_CF2:
% process a sequence using CF2 (Correlation filter tracking with convolutional features)
%
% Input:
% - seq: sequence name
% - res_path: result path
% - bSaveImage: flag for saving images
% Output:
% - results: tracking results, position prediction over time
%
% It is provided for educational/researrch purpose only.
% If you find the software useful, please consider cite our paper.
%
% Hierarchical Convolutional Features for Visual Tracking
% Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan Yang
% IEEE International Conference on Computer Vision, ICCV 2015
%
% Contact:
% Chao Ma ([email protected]), or
% Jia-Bin Huang ([email protected]).
% ================================================================================
% Environment setting
% ================================================================================
% Image file names
img_files = seq.s_frames;
% Seletected target size
target_sz = [seq.init_rect(1,4), seq.init_rect(1,3)];
% Initial target position
pos = [seq.init_rect(1,2), seq.init_rect(1,1)] + floor(target_sz/2);
% Extra area surrounding the target for including contexts
padding = struct('generic', 1.8, 'large', 1, 'height', 0.4);
lambda = 1e-4; % Regularization
output_sigma_factor = 0.1; % Spatial bandwidth (proportional to target)
interp_factor = 0.01; % Model learning rate
cell_size = 4; % Spatial cell size
video_path='';
show_visualization=false;
% ================================================================================
% Main entry function for visual tracking
% ================================================================================
[positions, time] = tracker_ensemble(video_path, img_files, pos, target_sz, ...
padding, lambda, output_sigma_factor, interp_factor, ...
cell_size, show_visualization);
% ================================================================================
% Return results to benchmark, in a workspace variable
% ================================================================================
rects = [positions(:,2) - target_sz(2)/2, positions(:,1) - target_sz(1)/2];
rects(:,3) = target_sz(2);
rects(:,4) = target_sz(1);
results.type = 'rect';
results.res = rects;
results.fps = numel(img_files)/time;
end