diff --git a/skpro/metrics/_classes.py b/skpro/metrics/_classes.py index fabdf27f1..882c7cb93 100644 --- a/skpro/metrics/_classes.py +++ b/skpro/metrics/_classes.py @@ -275,7 +275,8 @@ class LinearizedLogLoss(BaseDistrMetric): For a predictive distribution :math:`d` with pdf :math:`p_d` and a ground truth value :math:`y`, the linearized logarithmic loss is defined as :math:`L(y, d) := -\log p_d(y)` if :math:`p_d(y) \geq r`, - and :math:`L(y, d) := -\log p_d(r) + 1 - \frac{1}{r} p_d(r) (y-r)` otherwise. + and :math:`L(y, d) := -\log p_d(r) + 1 - \frac{1}{r} p_d(r)` otherwise, + where :math:`r` is the range of linearization parameter, `range` below. `evaluate` computes the average test sample loss. `evaluate_by_index` produces the loss sample by test data point