Skip to content

Commit

Permalink
[ENH] Half Cauchy Distribution (#371)
Browse files Browse the repository at this point in the history
Implements Half Cauchy Distribution, towards #22
  • Loading branch information
SaiRevanth25 authored Jun 4, 2024
1 parent 5198603 commit 58da8e7
Show file tree
Hide file tree
Showing 3 changed files with 82 additions and 0 deletions.
1 change: 1 addition & 0 deletions docs/source/api_reference/distributions.rst
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ Continuous support
Exponential
Fisk
Gamma
HalfCauchy
HalfNormal
Laplace
Logistic
Expand Down
2 changes: 2 additions & 0 deletions skpro/distributions/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@
"Exponential",
"Fisk",
"Gamma",
"HalfCauchy",
"HalfNormal",
"IID",
"Laplace",
Expand Down Expand Up @@ -39,6 +40,7 @@
from skpro.distributions.exponential import Exponential
from skpro.distributions.fisk import Fisk
from skpro.distributions.gamma import Gamma
from skpro.distributions.halfcauchy import HalfCauchy
from skpro.distributions.halfnormal import HalfNormal
from skpro.distributions.laplace import Laplace
from skpro.distributions.logistic import Logistic
Expand Down
79 changes: 79 additions & 0 deletions skpro/distributions/halfcauchy.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
# copyright: skpro developers, BSD-3-Clause License (see LICENSE file)
"""Half-Cauchy probability distribution."""

__author__ = ["SaiRevanth25"]

import pandas as pd
from scipy.stats import halfcauchy, rv_continuous

from skpro.distributions.adapters.scipy import _ScipyAdapter


class HalfCauchy(_ScipyAdapter):
r"""Half-Cauchy distribution.
This distribution is univariate, without correlation between dimensions
for the array-valued case.
The half-Cauchy distribution is a continuous probability distribution that
is the positive half of the Cauchy distribution. It is commonly used in
Bayesian statistics, especially as a prior distribution for scale parameters
due to its heavy tails and non-negativity.
The half-Cauchy distribution is parametrized by the scale parameter
:math:`\beta`, such that the pdf is
.. math::
f(x) = \frac{2}{\pi \beta \left(1 + \left(\frac{x}{\beta}\right)^2\right)},
x>0 otherwise 0
The scale parameter :math:`\beta` is represented by the parameter ``beta``.
Parameters
----------
beta : float or array of float (1D or 2D), must be positive
scale parameter of the half-Cauchy distribution
index : pd.Index, optional, default = RangeIndex
columns : pd.Index, optional, default = RangeIndex
Example
-------
>>> from skpro.distributions.halfcauchy import HalfCauchy
>>> hc = HalfCauchy(beta=1)
"""

_tags = {
"capabilities:approx": ["pdfnorm"],
"capabilities:exact": ["mean", "var", "pdf", "log_pdf", "cdf", "ppf"],
"distr:measuretype": "continuous",
"distr:paramtype": "parametric",
"broadcast_init": "on",
}

def __init__(self, beta, index=None, columns=None):
self.beta = beta

super().__init__(index=index, columns=columns)

def _get_scipy_object(self) -> rv_continuous:
return halfcauchy

def _get_scipy_param(self):
beta = self._bc_params["beta"]
return [beta], {}

@classmethod
def get_test_params(cls, parameter_set="default"):
"""Return testing parameter settings for the estimator."""
# array case examples
params1 = {"beta": [[1, 2], [3, 4]]}
params2 = {
"beta": 1,
"index": pd.Index([1, 2, 5]),
"columns": pd.Index(["a", "b"]),
}
# scalar case examples
params3 = {"beta": 2}
return [params1, params2, params3]

0 comments on commit 58da8e7

Please sign in to comment.