diff --git a/examples/01_skpro_intro.ipynb b/examples/01_skpro_intro.ipynb index 15122e1fb..85e3ea56e 100644 --- a/examples/01_skpro_intro.ipynb +++ b/examples/01_skpro_intro.ipynb @@ -618,6 +618,7 @@ "# example object 2: ResidualDouble regressor\n", "from sklearn.ensemble import RandomForestRegressor\n", "from sklearn.linear_model import LinearRegression\n", + "\n", "from skpro.regression.residual import ResidualDouble\n", "\n", "reg_mean = LinearRegression()\n", @@ -1431,7 +1432,7 @@ "estimator = ResidualDouble(LinearRegression())\n", "\n", "# tuning grid - do we fit an intercept in the linear regression?\n", - "param_grid = {\"estimator__fit_intercept\" : [True, False]}\n", + "param_grid = {\"estimator__fit_intercept\": [True, False]}\n", "\n", "# metric to be optimized\n", "crps_metric = CRPS()\n", @@ -1490,7 +1491,7 @@ "# only difference to GridSearchCV is the param_distributions argument\n", "\n", "# specification of the random search parameter sampler\n", - "param_distributions = {\"estimator__fit_intercept\" : [True, False]}\n", + "param_distributions = {\"estimator__fit_intercept\": [True, False]}\n", "\n", "# specification of the random search tuner\n", "rscv = RandomizedSearchCV(\n",