-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathskrub-worker.js
311 lines (276 loc) · 8.01 KB
/
skrub-worker.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
importScripts("https://cdn.jsdelivr.net/pyodide/v0.26.1/full/pyodide.js");
function isParquet(fileName) {
return fileName.endsWith(".parquet");
}
async function startPyodide() {
self.postMessage({
kind: "LOADING_PYODIDE"
});
const startTime = performance.now();
self.pyodide = await loadPyodide();
await self.pyodide.loadPackage("micropip");
const micropip = self.pyodide.pyimport("micropip");
await micropip.install(["pandas", "fastparquet", "matplotlib", "skrub",
"clevercsv-0.8.2-cp312-cp312-pyodide_2024_0_wasm32.whl"]);
await pyodide.runPython(`
import io
import os
import traceback
import codecs
os.environ["MPLBACKEND"] = "AGG"
import pandas as pd
import clevercsv
import chardet
from chardet.universaldetector import UniversalDetector
import skrub
import js
def escape_str_to_py(escape_str):
if escape_str == "none":
return None
return escape_str
def escape_py_to_str(escape_py):
if escape_py is None:
return "none"
return escape_py
`);
const endTime = performance.now();
console.log(`Loading pyodide took ${(endTime - startTime) / 1000} seconds`);
self.postMessage({
kind: "DONE_LOADING_PYODIDE"
});
}
async function getReport() {
await pyodideLoaded;
self.postMessage({
kind: "COMPUTING_REPORT",
fileInfo: self.fileInfo,
});
await pyodide.runPython(`
report_error = report = None
def get_report():
global report
stream = io.BytesIO(js.data.to_py())
if js.fileInfo.isParquet:
df = pd.read_parquet(stream)
else:
df = pd.read_csv(
stream,
encoding=js.csvParams.encoding,
sep=js.csvParams.delimiter,
escapechar=escape_str_to_py(js.csvParams.escape),
quotechar=js.csvParams.quote,
encoding_errors="replace",
na_values=["?"],
keep_default_na=True,
)
report = skrub.TableReport(df, title=js.fileInfo.name).html_snippet()
try:
get_report()
except Exception as e:
report_error = traceback.format_exc()
report = None
`);
self.postMessage({
kind: "DONE_COMPUTING_REPORT",
report: pyodide.globals.get("report"),
error: pyodide.globals.get("report_error"),
fileInfo: self.fileInfo,
pythonSnippets: pythonSnippets(self.fileInfo, self.csvParams),
});
}
async function csvPreview() {
await pyodideLoaded;
self.postMessage({
kind: "COMPUTING_CSV_PREVIEW",
fileInfo: self.fileInfo
});
await pyodide.runPython(`
csv_params = {}
encoding = delimiter = quote = escape = None
error = error_type = decoded_text = preview = None
def get_preview():
global encoding, delimiter, quote, escape, decoded_text, preview
data = js.data.to_py()
if js.sniff:
detector = UniversalDetector()
detector.feed(data[:70_000])
detector.close()
encoding = detector.result["encoding"]
if encoding in (None, "ascii"):
encoding = "utf-8"
csv_params["encoding"] = encoding
decoder = codecs.getincrementaldecoder(encoding)()
decoded_text = decoder.decode(data[:250_000])
dialect = clevercsv.Sniffer().sniff(decoded_text)
decoded_text = decoded_text[:4000]
delimiter = dialect.delimiter or ","
csv_params["delimiter"] = delimiter
quote = dialect.quotechar or '"'
csv_params["quote"] = quote
escape = dialect.escapechar or None
csv_params["escape"] = escape_py_to_str(escape)
else:
encoding = js.csvParams.encoding
delimiter = js.csvParams.delimiter
escape = escape_str_to_py(js.csvParams.escape)
quote = js.csvParams.quote
decoder = codecs.getincrementaldecoder(encoding)()
decoded_text = decoder.decode(data[:4000])
stream = io.BytesIO(data)
df = pd.read_csv(
stream,
encoding=encoding,
sep=delimiter,
escapechar=escape,
quotechar=quote,
nrows=5,
na_values=["?"],
keep_default_na=True,
)
preview = df.to_html().replace(
'class="dataframe"', 'class="pure-table pure-table-striped"'
)
try:
get_preview()
except Exception as e:
error = traceback.format_exc()
error_type = e.__class__.__name__
`);
let computeReport = false;
const data = {
kind: "DONE_COMPUTING_CSV_PREVIEW",
raw: pyodide.globals.get("decoded_text"),
preview: pyodide.globals.get("preview"),
errorType: pyodide.globals.get("error_type"),
error: pyodide.globals.get("error"),
fileInfo: self.fileInfo,
};
if (self.sniff) {
const proxy = pyodide.globals.get("csv_params");
try {
self.csvParams = proxy.toJs({
create_proxies: false,
dict_converter: Object.fromEntries
});
} finally {
proxy.destroy();
}
data.sniffedCsvParams = self.csvParams;
if (data.error === undefined) {
computeReport = true;
}
}
data.isComputingReport = computeReport;
self.postMessage(data);
if (computeReport) {
getReport();
}
}
function readFile(file) {
return new Promise((resolve, reject) => {
const reader = new FileReader();
reader.onload = () => {
resolve(reader.result);
};
reader.onerror = reject;
reader.readAsArrayBuffer(file);
});
}
function pythonReadFileSnippet(fileInfo, csvParams, moduleName) {
if (fileInfo.isParquet) {
switch (moduleName) {
case "pandas":
return `
df = pd.read_parquet('${fileInfo.name}')
`;
case "polars":
return `
df = pl.read_parquet('${fileInfo.name}')
`;
}
}
const delimiter = csvParams.delimiter === "\t" ? "'\\t'" :
`'${csvParams.delimiter}'`;
const escape = csvParams.escape === "none" ? "None" : `'\\\\'`;
const quote = csvParams.quote === '"' ? `'"'` : `"'"`;
switch (moduleName) {
case "pandas":
return `
df = pd.read_csv(
'${fileInfo.name}',
encoding='${csvParams.encoding}',
sep=${delimiter},
quotechar=${quote},
escapechar=${escape},
)
`;
case "polars":
return `
df = pl.read_csv(
'${fileInfo.name}',
encoding='${csvParams.encoding}',
separator=${delimiter},
quote_char=${quote},
)
`;
}
}
function pythonSnippets(fileInfo, csvParams) {
const snippets = {};
const reportGenSnippet = `
report = TableReport(df, title='${fileInfo.name}')
report.open()
`;
snippets.pandas = {
text: `import pandas as pd
from skrub import TableReport
` + pythonReadFileSnippet(fileInfo, csvParams, "pandas") + reportGenSnippet
};
snippets.polars = {
text: `import polars as pl
from skrub import TableReport
` + pythonReadFileSnippet(fileInfo, csvParams, "polars") + reportGenSnippet,
// polars does not support escapechar, see
// https://github.com/pola-rs/polars/issues/3074#issuecomment-1178778783
warningEscapeChar: !fileInfo.isParquet && csvParams.escape !== "none"
};
return snippets;
}
async function FILE_SELECTED(data) {
let fileName = data.file.name;
self.fileInfo = {
name: fileName,
size: data.file.size,
isParquet: self.isParquet(fileName)
};
self.postMessage({
kind: "LOADING_FILE",
fileInfo: self.fileInfo,
});
self.data = null;
self.data = await readFile(data.file);
self.postMessage({
kind: "DONE_LOADING_FILE",
fileInfo: self.fileInfo,
});
if (self.fileInfo.isParquet) {
getReport();
} else {
self.sniff = true;
csvPreview();
}
}
function CSV_PARAMS(data) {
if (self.csvParams !== data.csvParams) {
self.sniff = false;
self.csvParams = data.csvParams;
csvPreview();
}
}
async function CSV_COMMIT(data) {
getReport();
}
const pyodideLoaded = startPyodide();
self.onmessage = (e) => {
self[e.data.kind](e.data);
};