-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
48 lines (37 loc) · 1.66 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import numpy as np
def generate_random_embedding(dim):
return np.random.rand(dim)
# Example word embeddings (replace these with your actual embeddings)
num_embeddings = 5
embedding_dim = 3
embeddings = [generate_random_embedding(embedding_dim) for _ in range(num_embeddings)]
# Define a non-commutative product operation
def non_comm_product(embedding_a, embedding_b):
return np.outer(embedding_a, embedding_b)
# Define the algebra (using non-commutative product)
def create_algebra(embeddings):
n = len(embeddings)
algebra = np.zeros((n, n, embedding_dim, embedding_dim))
for i in range(n):
for j in range(n):
algebra[i, j] = non_comm_product(embeddings[i], embeddings[j])
return algebra
algebra = create_algebra(embeddings)
# Example Hilbert space representation
# (In practice, this would require a more sophisticated mapping)
hilbert_space_representation = lambda x: x
# Define a simplified Dirac operator (In practice, this should be more complex)
def dirac_operator(embedding):
return np.linalg.norm(embedding)
# Calculate Dirac operator for all embeddings
dirac_operators = [dirac_operator(embedding) for embedding in embeddings]
# Define a simplified Connes' metric (In practice, this should be more complex)
def connes_metric(dirac_a, dirac_b):
return abs(dirac_a - dirac_b)
# Calculate the distance between all pairs of embeddings using Connes' metric
distance_matrix = np.zeros((num_embeddings, num_embeddings))
for i in range(num_embeddings):
for j in range(num_embeddings):
distance_matrix[i, j] = connes_metric(dirac_operators[i], dirac_operators[j])
print("Connes' metric distance matrix:")
print(distance_matrix)