forked from qfgaohao/pytorch-ssd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathopen_images_downloader.py
184 lines (153 loc) · 7.24 KB
/
open_images_downloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import time
import boto3
from botocore import UNSIGNED
from botocore.config import Config
import botocore
import logging
from multiprocessing import Pool, Manager
import pandas as pd
import os
import argparse
import sys
import functools
from urllib import request
s3 = boto3.client('s3', config=Config(signature_version=UNSIGNED))
def download(bucket, root, retry, counter, lock, path):
i = 0
src = path
dest = f"{root}/{path}"
while i < retry:
try:
if not os.path.exists(dest):
s3.download_file(bucket, src, dest)
else:
logging.info(f"{dest} already exists.")
with lock:
counter.value += 1
if counter.value % 100 == 0:
logging.warning(f"Downloaded {counter.value} images.")
return
except botocore.exceptions.ClientError as e:
if e.response['Error']['Code'] == "404":
logging.warning(f"The file s3://{bucket}/{src} does not exist.")
return
i += 1
logging.warning(f"Sleep {i} and try again.")
time.sleep(i)
logging.warning(f"Failed to download the file s3://{bucket}/{src}. Exception: {e}")
def batch_download(bucket, file_paths, root, num_workers=10, retry=10):
with Pool(num_workers) as p:
m = Manager()
counter = m.Value('i', 0)
lock = m.Lock()
download_ = functools.partial(download, bucket, root, retry, counter, lock)
p.map(download_, file_paths)
def http_download(url, path):
with request.urlopen(url) as f:
with open(path, "wb") as fout:
buf = f.read(1024)
while buf:
fout.write(buf)
buf = f.read(1024)
def log_counts(values):
for k, count in values.value_counts().iteritems():
logging.warning(f"{k}: {count}/{len(values)} = {count/len(values):.2f}.")
def parse_args():
parser = argparse.ArgumentParser(
description='Dowload open image dataset by class.')
parser.add_argument("--root", type=str,
help='The root directory that you want to store the open image data.')
parser.add_argument("include_depiction", action="store_true",
help="Do you want to include drawings or depictions?")
parser.add_argument("--class_names", type=str,
help="the classes you want to download.")
parser.add_argument("--num_workers", type=int, default=10,
help="the classes you want to download.")
parser.add_argument("--retry", type=int, default=10,
help="retry times when downloading.")
parser.add_argument("--filter_file", type=str, default="",
help="This file specifies the image ids you want to exclude.")
parser.add_argument('--remove_overlapped', action='store_true',
help="Remove single boxes covered by group boxes.")
return parser.parse_args()
if __name__ == '__main__':
logging.basicConfig(stream=sys.stdout, level=logging.WARNING,
format='%(asctime)s - %(name)s - %(message)s')
args = parse_args()
bucket = "open-images-dataset"
names = [e.strip() for e in args.class_names.split(",")]
class_names = []
group_filters = []
percentages = []
for name in names:
t = name.split(":")
class_names.append(t[0].strip())
if len(t) >= 2 and t[1].strip():
group_filters.append(t[1].strip())
else:
group_filters.append("")
if len(t) >= 3 and t[2].strip():
percentages.append(float(t[2].strip()))
else:
percentages.append(1.0)
if not os.path.exists(args.root):
os.makedirs(args.root)
excluded_images = set()
if args.filter_file:
for line in open(args.filter_file):
img_id = line.strip()
if not img_id:
continue
excluded_images.add(img_id)
class_description_file = os.path.join(args.root, "class-descriptions-boxable.csv")
if not os.path.exists(class_description_file):
url = "https://storage.googleapis.com/openimages/2018_04/class-descriptions-boxable.csv"
logging.warning(f"Download {url}.")
http_download(url, class_description_file)
class_descriptions = pd.read_csv(class_description_file,
names=["id", "ClassName"])
class_descriptions = class_descriptions[class_descriptions['ClassName'].isin(class_names)]
image_files = []
for dataset_type in ["train", "validation", "test"]:
image_dir = os.path.join(args.root, dataset_type)
os.makedirs(image_dir, exist_ok=True)
annotation_file = f"{args.root}/{dataset_type}-annotations-bbox.csv"
if not os.path.exists(annotation_file):
url = f"https://storage.googleapis.com/openimages/2018_04/{dataset_type}/{dataset_type}-annotations-bbox.csv"
logging.warning(f"Download {url}.")
http_download(url, annotation_file)
logging.warning(f"Read annotation file {annotation_file}")
annotations = pd.read_csv(annotation_file)
annotations = pd.merge(annotations, class_descriptions,
left_on="LabelName", right_on="id",
how="inner")
if not args.include_depiction:
annotations = annotations.loc[annotations['IsDepiction'] != 1, :]
filtered = []
for class_name, group_filter, percentage in zip(class_names, group_filters, percentages):
sub = annotations.loc[annotations['ClassName'] == class_name, :]
excluded_images |= set(sub['ImageID'].sample(frac=1 - percentage))
if group_filter == '~group':
excluded_images |= set(sub.loc[sub['IsGroupOf'] == 1, 'ImageID'])
elif group_filter == 'group':
excluded_images |= set(sub.loc[sub['IsGroupOf'] == 0, 'ImageID'])
filtered.append(sub)
annotations = pd.concat(filtered)
annotations = annotations.loc[~annotations['ImageID'].isin(excluded_images), :]
if args.remove_overlapped:
images_with_group = annotations.loc[annotations['IsGroupOf'] == 1, 'ImageID']
annotations = annotations.loc[~(annotations['ImageID'].isin(set(images_with_group)) & (annotations['IsGroupOf'] == 0)), :]
annotations = annotations.sample(frac=1.0)
logging.warning(f"{dataset_type} bounding boxes size: {annotations.shape[0]}")
logging.warning("Approximate Image Stats: ")
log_counts(annotations.drop_duplicates(["ImageID", "ClassName"])["ClassName"])
logging.warning("Label distribution: ")
log_counts(annotations['ClassName'])
logging.warning(f"Shuffle dataset.")
sub_annotation_file = f"{args.root}/sub-{dataset_type}-annotations-bbox.csv"
logging.warning(f"Save {dataset_type} data to {sub_annotation_file}.")
annotations.to_csv(sub_annotation_file, index=False)
image_files.extend(f"{dataset_type}/{id}.jpg" for id in set(annotations['ImageID']))
logging.warning(f"Start downloading {len(image_files)} images.")
batch_download(bucket, image_files, args.root, args.num_workers, args.retry)
logging.warning("Task Done.")