-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrained.py
552 lines (421 loc) · 19.7 KB
/
pretrained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import re
import urllib
import warnings
from argparse import Namespace
from pathlib import Path
import torch
import esm
from esm.model.esm2 import ESM2
def _has_regression_weights(model_name):
"""Return whether we expect / require regression weights;
Right now that is all models except ESM-1v, ESM-IF, and partially trained ESM2 models"""
return not ("esm1v" in model_name or "esm_if" in model_name or "270K" in model_name or "500K" in model_name)
def load_model_and_alphabet(model_name):
if model_name.endswith(".pt"): # treat as filepath
return load_model_and_alphabet_local(model_name)
else:
return load_model_and_alphabet_hub(model_name)
def load_hub_workaround(url):
try:
data = torch.hub.load_state_dict_from_url(url, progress=False, map_location="cpu")
except RuntimeError:
# Pytorch version issue - see https://github.com/pytorch/pytorch/issues/43106
fn = Path(url).name
data = torch.load(
f"{torch.hub.get_dir()}/checkpoints/{fn}",
map_location="cpu",
)
except urllib.error.HTTPError as e:
raise Exception(f"Could not load {url}, check if you specified a correct model name?")
return data
def load_regression_hub(model_name):
url = f"https://dl.fbaipublicfiles.com/fair-esm/regression/{model_name}-contact-regression.pt"
regression_data = load_hub_workaround(url)
return regression_data
def _download_model_and_regression_data(model_name):
url = f"https://dl.fbaipublicfiles.com/fair-esm/models/{model_name}.pt"
model_data = load_hub_workaround(url)
if _has_regression_weights(model_name):
regression_data = load_regression_hub(model_name)
else:
regression_data = None
return model_data, regression_data
def load_model_and_alphabet_hub(model_name):
model_data, regression_data = _download_model_and_regression_data(model_name)
return load_model_and_alphabet_core(model_name, model_data, regression_data)
def load_model_and_alphabet_local(model_location):
"""Load from local path. The regression weights need to be co-located"""
model_location = Path(model_location)
model_data = torch.load(str(model_location), map_location="cpu")
model_name = model_location.stem
if _has_regression_weights(model_name):
regression_location = str(model_location.with_suffix("")) + "-contact-regression.pt"
regression_data = torch.load(regression_location, map_location="cpu")
else:
regression_data = None
return load_model_and_alphabet_core(model_name, model_data, regression_data)
def has_emb_layer_norm_before(model_state):
"""Determine whether layer norm needs to be applied before the encoder"""
return any(k.startswith("emb_layer_norm_before") for k, param in model_state.items())
def _load_model_and_alphabet_core_v1(model_data):
import esm # since esm.inverse_folding is imported below, you actually have to re-import esm here
alphabet = esm.Alphabet.from_architecture(model_data["args"].arch)
if model_data["args"].arch == "roberta_large":
# upgrade state dict
pra = lambda s: "".join(s.split("encoder_")[1:] if "encoder" in s else s)
prs1 = lambda s: "".join(s.split("encoder.")[1:] if "encoder" in s else s)
prs2 = lambda s: "".join(
s.split("sentence_encoder.")[1:] if "sentence_encoder" in s else s
)
model_args = {pra(arg[0]): arg[1] for arg in vars(model_data["args"]).items()}
model_state = {prs1(prs2(arg[0])): arg[1] for arg in model_data["model"].items()}
model_state["embed_tokens.weight"][alphabet.mask_idx].zero_() # For token drop
model_args["emb_layer_norm_before"] = has_emb_layer_norm_before(model_state)
model_type = esm.ProteinBertModel
elif model_data["args"].arch == "protein_bert_base":
# upgrade state dict
pra = lambda s: "".join(s.split("decoder_")[1:] if "decoder" in s else s)
prs = lambda s: "".join(s.split("decoder.")[1:] if "decoder" in s else s)
model_args = {pra(arg[0]): arg[1] for arg in vars(model_data["args"]).items()}
model_state = {prs(arg[0]): arg[1] for arg in model_data["model"].items()}
model_type = esm.ProteinBertModel
elif model_data["args"].arch == "msa_transformer":
# upgrade state dict
pra = lambda s: "".join(s.split("encoder_")[1:] if "encoder" in s else s)
prs1 = lambda s: "".join(s.split("encoder.")[1:] if "encoder" in s else s)
prs2 = lambda s: "".join(
s.split("sentence_encoder.")[1:] if "sentence_encoder" in s else s
)
prs3 = lambda s: s.replace("row", "column") if "row" in s else s.replace("column", "row")
model_args = {pra(arg[0]): arg[1] for arg in vars(model_data["args"]).items()}
model_state = {prs1(prs2(prs3(arg[0]))): arg[1] for arg in model_data["model"].items()}
if model_args.get("embed_positions_msa", False):
emb_dim = model_state["msa_position_embedding"].size(-1)
model_args["embed_positions_msa_dim"] = emb_dim # initial release, bug: emb_dim==1
model_type = esm.MSATransformer
elif "invariant_gvp" in model_data["args"].arch:
import esm.inverse_folding
model_type = esm.inverse_folding.gvp_transformer.GVPTransformerModel
model_args = vars(model_data["args"]) # convert Namespace -> dict
def update_name(s):
# Map the module names in checkpoints trained with internal code to
# the updated module names in open source code
s = s.replace("W_v", "embed_graph.embed_node")
s = s.replace("W_e", "embed_graph.embed_edge")
s = s.replace("embed_scores.0", "embed_confidence")
s = s.replace("embed_score.", "embed_graph.embed_confidence.")
s = s.replace("seq_logits_projection.", "")
s = s.replace("embed_ingraham_features", "embed_dihedrals")
s = s.replace("embed_gvp_in_local_frame.0", "embed_gvp_output")
s = s.replace("embed_features_in_local_frame.0", "embed_gvp_input_features")
return s
model_state = {
update_name(sname): svalue
for sname, svalue in model_data["model"].items()
if "version" not in sname
}
else:
raise ValueError("Unknown architecture selected")
model = model_type(
Namespace(**model_args),
alphabet,
)
return model, alphabet, model_state
def _load_model_and_alphabet_core_v2(model_data):
def upgrade_state_dict(state_dict):
"""Removes prefixes 'model.encoder.sentence_encoder.' and 'model.encoder.'."""
prefixes = ["encoder.sentence_encoder.", "encoder."]
pattern = re.compile("^" + "|".join(prefixes))
state_dict = {pattern.sub("", name): param for name, param in state_dict.items()}
return state_dict
cfg = model_data["cfg"]["model"]
state_dict = model_data["model"]
state_dict = upgrade_state_dict(state_dict)
alphabet = esm.data.Alphabet.from_architecture("ESM-1b")
model = ESM2(
num_layers=cfg.encoder_layers,
embed_dim=cfg.encoder_embed_dim,
attention_heads=cfg.encoder_attention_heads,
alphabet=alphabet,
token_dropout=cfg.token_dropout,
)
return model, alphabet, state_dict
def load_model_and_alphabet_core(model_name, model_data, regression_data=None):
if regression_data is not None:
model_data["model"].update(regression_data["model"])
if model_name.startswith("esm2"):
model, alphabet, model_state = _load_model_and_alphabet_core_v2(model_data)
else:
model, alphabet, model_state = _load_model_and_alphabet_core_v1(model_data)
expected_keys = set(model.state_dict().keys())
found_keys = set(model_state.keys())
if regression_data is None:
expected_missing = {"contact_head.regression.weight", "contact_head.regression.bias"}
error_msgs = []
missing = (expected_keys - found_keys) - expected_missing
if missing:
error_msgs.append(f"Missing key(s) in state_dict: {missing}.")
unexpected = found_keys - expected_keys
if unexpected:
error_msgs.append(f"Unexpected key(s) in state_dict: {unexpected}.")
if error_msgs:
raise RuntimeError(
"Error(s) in loading state_dict for {}:\n\t{}".format(
model.__class__.__name__, "\n\t".join(error_msgs)
)
)
if expected_missing - found_keys:
warnings.warn(
"Regression weights not found, predicting contacts will not produce correct results."
)
model.load_state_dict(model_state, strict=regression_data is not None)
return model, alphabet
def esm1_t34_670M_UR50S():
"""34 layer transformer model with 670M params, trained on Uniref50 Sparse.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm1_t34_670M_UR50S")
def esm1_t34_670M_UR50D():
"""34 layer transformer model with 670M params, trained on Uniref50 Dense.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm1_t34_670M_UR50D")
def esm1_t34_670M_UR100():
"""34 layer transformer model with 670M params, trained on Uniref100.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm1_t34_670M_UR100")
def esm1_t12_85M_UR50S():
"""12 layer transformer model with 85M params, trained on Uniref50 Sparse.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm1_t12_85M_UR50S")
def esm1_t6_43M_UR50S():
"""6 layer transformer model with 43M params, trained on Uniref50 Sparse.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm1_t6_43M_UR50S")
def esm1b_t33_650M_UR50S():
"""33 layer transformer model with 650M params, trained on Uniref50 Sparse.
This is our best performing model, which will be described in a future publication.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm1b_t33_650M_UR50S")
def esm_msa1_t12_100M_UR50S():
warnings.warn(
"This model had a minor bug in the positional embeddings, "
"please use ESM-MSA-1b: esm.pretrained.esm_msa1b_t12_100M_UR50S()",
)
return load_model_and_alphabet_hub("esm_msa1_t12_100M_UR50S")
def esm_msa1b_t12_100M_UR50S():
return load_model_and_alphabet_hub("esm_msa1b_t12_100M_UR50S")
def esm1v_t33_650M_UR90S():
"""33 layer transformer model with 650M params, trained on Uniref90.
This is model 1 of a 5 model ensemble.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm1v_t33_650M_UR90S_1")
def esm1v_t33_650M_UR90S_1():
"""33 layer transformer model with 650M params, trained on Uniref90.
This is model 1 of a 5 model ensemble.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm1v_t33_650M_UR90S_1")
def esm1v_t33_650M_UR90S_2():
"""33 layer transformer model with 650M params, trained on Uniref90.
This is model 2 of a 5 model ensemble.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm1v_t33_650M_UR90S_2")
def esm1v_t33_650M_UR90S_3():
"""33 layer transformer model with 650M params, trained on Uniref90.
This is model 3 of a 5 model ensemble.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm1v_t33_650M_UR90S_3")
def esm1v_t33_650M_UR90S_4():
"""33 layer transformer model with 650M params, trained on Uniref90.
This is model 4 of a 5 model ensemble.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm1v_t33_650M_UR90S_4")
def esm1v_t33_650M_UR90S_5():
"""33 layer transformer model with 650M params, trained on Uniref90.
This is model 5 of a 5 model ensemble.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm1v_t33_650M_UR90S_5")
def esm_if1_gvp4_t16_142M_UR50():
"""Inverse folding model with 142M params, with 4 GVP-GNN layers, 8
Transformer encoder layers, and 8 Transformer decoder layers, trained on
CATH structures and 12 million alphafold2 predicted structures from UniRef50
sequences.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm_if1_gvp4_t16_142M_UR50")
def esm2_t6_8M_UR50D():
"""6 layer ESM-2 model with 8M params, trained on UniRef50.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm2_t6_8M_UR50D")
def esm2_t12_35M_UR50D():
"""12 layer ESM-2 model with 35M params, trained on UniRef50.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm2_t12_35M_UR50D")
def esm2_t30_150M_UR50D():
"""30 layer ESM-2 model with 150M params, trained on UniRef50.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm2_t30_150M_UR50D")
def esm2_t33_650M_UR50D():
"""33 layer ESM-2 model with 650M params, trained on UniRef50.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm2_t33_650M_UR50D")
def esm2_t36_3B_UR50D():
"""36 layer ESM-2 model with 3B params, trained on UniRef50.
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm2_t36_3B_UR50D")
def esm2_t48_15B_UR50D():
"""48 layer ESM-2 model with 15B params, trained on UniRef50.
If you have OOM while loading this model, please refer to README
on how to employ FSDP and ZeRO CPU offloading
Returns a tuple of (Model, Alphabet).
"""
return load_model_and_alphabet_hub("esm2_t48_15B_UR50D")
def esmfold_v0():
"""
ESMFold v0 model with 3B ESM-2, 48 folding blocks.
This version was used for the paper (Lin et al, 2022). It was trained
on all PDB chains until 2020-05, to ensure temporal holdout with CASP14
and the CAMEO validation and test set reported there.
"""
import esm.esmfold.v1.pretrained
return esm.esmfold.v1.pretrained.esmfold_v0()
def esmfold_v1():
"""
ESMFold v1 model using 3B ESM-2, 48 folding blocks.
ESMFold provides fast high accuracy atomic level structure prediction
directly from the individual sequence of a protein. ESMFold uses the ESM2
protein language model to extract meaningful representations from the
protein sequence.
"""
import esm.esmfold.v1.pretrained
return esm.esmfold.v1.pretrained.esmfold_v1()
def esmfold_structure_module_only_8M():
"""
ESMFold baseline model using 8M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 500K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
import esm.esmfold.v1.pretrained
return esm.esmfold.v1.pretrained.esmfold_structure_module_only_8M()
def esmfold_structure_module_only_8M_270K():
"""
ESMFold baseline model using 8M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 270K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
import esm.esmfold.v1.pretrained
return esm.esmfold.v1.pretrained.esmfold_structure_module_only_8M_270K()
def esmfold_structure_module_only_35M():
"""
ESMFold baseline model using 35M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 500K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
import esm.esmfold.v1.pretrained
return esm.esmfold.v1.pretrained.esmfold_structure_module_only_35M()
def esmfold_structure_module_only_35M_270K():
"""
ESMFold baseline model using 35M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 270K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
import esm.esmfold.v1.pretrained
return esm.esmfold.v1.pretrained.esmfold_structure_module_only_35M_270K()
def esmfold_structure_module_only_150M():
"""
ESMFold baseline model using 150M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 500K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
import esm.esmfold.v1.pretrained
return esm.esmfold.v1.pretrained.esmfold_structure_module_only_150M()
def esmfold_structure_module_only_150M_270K():
"""
ESMFold baseline model using 150M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 270K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
import esm.esmfold.v1.pretrained
return esm.esmfold.v1.pretrained.esmfold_structure_module_only_150M_270K()
def esmfold_structure_module_only_650M():
"""
ESMFold baseline model using 650M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 500K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
import esm.esmfold.v1.pretrained
return esm.esmfold.v1.pretrained.esmfold_structure_module_only_650M()
def esmfold_structure_module_only_650M_270K():
"""
ESMFold baseline model using 650M ESM-2, 0 folding blocks.
ESM-2 here is trained out to 270K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
import esm.esmfold.v1.pretrained
return esm.esmfold.v1.pretrained.esmfold_structure_module_only_650M_270K()
def esmfold_structure_module_only_3B():
"""
ESMFold baseline model using 3B ESM-2, 0 folding blocks.
ESM-2 here is trained out to 500K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
import esm.esmfold.v1.pretrained
return esm.esmfold.v1.pretrained.esmfold_structure_module_only_3B()
def esmfold_structure_module_only_3B_270K():
"""
ESMFold baseline model using 3B ESM-2, 0 folding blocks.
ESM-2 here is trained out to 270K updates.
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
import esm.esmfold.v1.pretrained
return esm.esmfold.v1.pretrained.esmfold_structure_module_only_3B_270K()
def esmfold_structure_module_only_15B():
"""
ESMFold baseline model using 15B ESM-2, 0 folding blocks.
ESM-2 here is trained out to 270K updates.
The 15B parameter ESM-2 was not trained out to 500K updates
This is a model designed to test the capabilities of the language model
when ablated for number of parameters in the language model.
See table S1 in (Lin et al, 2022).
"""
import esm.esmfold.v1.pretrained
return esm.esmfold.v1.pretrained.esmfold_structure_module_only_15B()