forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_caffe2_common.py
41 lines (34 loc) · 1.32 KB
/
test_caffe2_common.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import glob
import numpy as np
import onnx.backend.test
import caffe2.python.onnx.backend as c2
import os
from onnx import numpy_helper
def load_tensor_as_numpy_array(f):
tensor = onnx.TensorProto()
with open(f, 'rb') as file:
tensor.ParseFromString(file.read())
return tensor
def assert_similar(ref, real):
np.testing.assert_equal(len(ref), len(real))
for i in range(len(ref)):
np.testing.assert_allclose(ref[i], real[i], rtol=1e-3)
def run_generated_test(model_file, data_dir, device='CPU'):
model = onnx.load(model_file)
input_num = len(glob.glob(os.path.join(data_dir, "input_*.pb")))
inputs = []
for i in range(input_num):
inputs.append(numpy_helper.to_array(load_tensor_as_numpy_array(
os.path.join(data_dir, "input_{}.pb".format(i)))))
output_num = len(glob.glob(os.path.join(data_dir, "output_*.pb")))
outputs = []
for i in range(output_num):
outputs.append(numpy_helper.to_array(load_tensor_as_numpy_array(
os.path.join(data_dir, "output_{}.pb".format(i)))))
prepared = c2.prepare(model, device=device)
c2_outputs = prepared.run(inputs)
assert_similar(outputs, c2_outputs)