forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
channelwise_conv3d_op_cudnn.cu
607 lines (545 loc) · 20.7 KB
/
channelwise_conv3d_op_cudnn.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
#include "caffe2/core/common_cudnn.h"
#include "caffe2/core/context_gpu.h"
#include "caffe2/core/cudnn_wrappers.h"
#include "caffe2/operators/conv_op.h"
#include "caffe2/operators/conv_op_cache_cudnn.h"
#include "caffe2/operators/conv_pool_op_base.h"
// Adopted from caffe2 depthwise conv at
// pytorch/caffe2/caffe2/operators/depthwise_3x3_conv_op_cudnn.cu
namespace caffe2 {
struct DepthwiseArgs {
// Input layer dimensions
int batch{0};
int in_rows{0};
int in_cols{0};
int in_length{0};
int in_depth{0};
// filter size
int filter_rows{0};
int filter_cols{0};
int filter_length{0};
// strides and pads
int stride{0};
int temporal_stride{0};
int pad_rows{0};
int pad_cols{0};
int pad_length{0};
// Output layer dimensions
int out_rows{0};
int out_cols{0};
int out_length{0};
int out_depth{0};
};
template <typename T>
__global__ void DepthwiseConv3dGPUKernelNCHW(
const DepthwiseArgs args,
const T* input,
const T* filter,
T* output,
int num_outputs) {
const int in_rows = args.in_rows;
const int in_cols = args.in_cols;
const int in_length = args.in_length;
const int in_depth = args.in_depth;
const int filter_rows = args.filter_rows;
const int filter_cols = args.filter_cols;
const int filter_length = args.filter_length;
const int stride = args.stride;
const int temporal_stride = args.temporal_stride;
const int pad_rows = args.pad_rows;
const int pad_cols = args.pad_cols;
const int pad_length = args.pad_length;
const int out_rows = args.out_rows;
const int out_cols = args.out_cols;
const int out_length = args.out_length;
const int out_depth = args.out_depth;
CUDA_1D_KERNEL_LOOP(thread_id, num_outputs) {
const int OW = thread_id % out_cols;
const int OH = (thread_id / out_cols) % out_rows;
const int OL = (thread_id / out_cols / out_rows) % out_length;
const int OC = (thread_id / out_cols / out_rows / out_length) % out_depth;
const int OB = thread_id / out_cols / out_rows / out_length / out_depth;
const int in_d = OC;
const int input_offset_temp =
(OB * in_depth + OC) * (in_length * in_rows * in_cols);
const int input_row_start = OH * stride - pad_rows;
const int input_col_start = OW * stride - pad_cols;
const int input_length_start = OL * temporal_stride - pad_length;
const int input_row_end = input_row_start + filter_rows;
const int input_col_end = input_col_start + filter_cols;
const int input_length_end = input_length_start + filter_length;
const float* filter_start =
filter + in_d * filter_rows * filter_cols * filter_length;
T sum = 0;
if (input_row_start >= 0 && input_col_start >= 0 &&
input_length_start >= 0 && input_row_end < in_rows &&
input_col_end < in_cols && input_length_end < in_length) {
// Loop that doesn't need to check for boundary conditions.
#pragma unroll
for (int f_l = 0; f_l < filter_length; ++f_l) {
const int in_l = input_length_start + f_l;
#pragma unroll
for (int f_r = 0; f_r < filter_rows; ++f_r) {
const int in_r = input_row_start + f_r;
const float* filter_offset = filter_start +
filter_cols * filter_rows * f_l + filter_cols * f_r;
#pragma unroll
for (int f_c = 0; f_c < filter_cols; ++f_c) {
const int in_c = input_col_start + f_c;
const int input_offset = (input_offset_temp) +
(in_l * in_cols * in_rows) + (in_r * in_cols) + in_c;
#if __CUDA_ARCH__ >= 350
sum += __ldg(input + input_offset) * __ldg(filter_offset + f_c);
#else
sum += input[input_offset] * filter_offset[f_c];
#endif
}
}
}
} else {
// Loop that needs to check for boundary conditions.
#pragma unroll
for (int f_l = 0; f_l < filter_length; ++f_l) {
const int in_l = input_length_start + f_l;
#pragma unroll
for (int f_r = 0; f_r < filter_rows; ++f_r) {
const int in_r = input_row_start + f_r;
const float* filter_offset = filter_start +
filter_cols * filter_rows * f_l + filter_cols * f_r;
#pragma unroll
for (int f_c = 0; f_c < filter_cols; ++f_c) {
const int in_c = input_col_start + f_c;
if (in_r >= 0 && in_r < in_rows && in_c >= 0 && in_c < in_cols &&
in_l >= 0 && in_l < in_length) {
const int input_offset = (input_offset_temp) +
(in_l * in_cols * in_rows) + (in_r * in_cols) + in_c;
#if __CUDA_ARCH__ >= 350
sum += __ldg(input + input_offset) * __ldg(filter_offset + f_c);
#else
sum += input[input_offset] * filter_offset[f_c];
#endif
}
}
}
}
}
output[thread_id] = sum;
}
}
// A Cuda kernel to compute the depthwise convolution backprop w.r.t. filter.
template <typename T>
__global__ void DepthwiseConv3dBackpropFilterGPUKernelNCHW(
const DepthwiseArgs args,
const T* out_backprop,
const T* input,
T* filter_backprop,
int num_out_backprop) {
const int in_rows = args.in_rows;
const int in_cols = args.in_cols;
const int in_length = args.in_length;
const int in_depth = args.in_depth;
const int filter_rows = args.filter_rows;
const int filter_cols = args.filter_cols;
const int filter_length = args.filter_length;
const int stride = args.stride;
const int temporal_stride = args.temporal_stride;
const int pad_rows = args.pad_rows;
const int pad_cols = args.pad_cols;
const int pad_length = args.pad_length;
const int out_rows = args.out_rows;
const int out_cols = args.out_cols;
const int out_length = args.out_length;
const int out_depth = args.out_depth;
CUDA_1D_KERNEL_LOOP(thread_id, num_out_backprop) {
// Compute the indexes of this thread in the output.
const int OW = thread_id % out_cols;
const int OH = (thread_id / out_cols) % out_rows;
const int OL = (thread_id / out_cols / out_rows) % out_length;
const int OC = (thread_id / out_cols / out_rows / out_length) % out_depth;
const int OB = thread_id / out_cols / out_rows / out_length / out_depth;
// Compute the input depth and the index of depth multiplier.
const int in_d = OC;
// Decide if all input is valid, if yes, we can skip the boundary checks
// for each input.
const int in_r_start = OH * stride - pad_rows;
const int in_c_start = OW * stride - pad_cols;
const int in_l_start = OL * temporal_stride - pad_length;
const int in_r_end = in_r_start + filter_rows;
const int in_c_end = in_c_start + filter_cols;
const int in_l_end = in_l_start + filter_length;
const int out_backprop_offset =
(OB * out_depth * out_length * out_rows * out_cols) +
(OC * out_length * out_rows * out_cols) + (OL * out_rows * out_cols) +
(OH * out_cols) + (OW);
#if __CUDA_ARCH__ >= 350
const T out_bp = __ldg(out_backprop + out_backprop_offset);
#else
const T out_bp = out_backprop[out_backprop_offset];
#endif
if (in_r_start >= 0 && in_c_start >= 0 && in_r_end < in_rows &&
in_c_end < in_cols && in_l_start >= 0 && in_l_end < in_length) {
#pragma unroll
for (int f_l = 0; f_l < filter_length; ++f_l) {
const int in_l = in_l_start + f_l;
#pragma unroll
for (int f_r = 0; f_r < filter_rows; ++f_r) {
const int in_r = in_r_start + f_r;
// Avoid repeated computation.
const int input_offset_temp =
(OB * in_depth * in_length * in_rows * in_cols) +
(OC * in_length * in_rows * in_cols) +
(in_l * in_rows * in_cols) + (in_r * in_cols);
#pragma unroll
for (int f_c = 0; f_c < filter_cols; ++f_c) {
const int in_c = in_c_start + f_c;
const int input_offset = input_offset_temp + in_c;
#if __CUDA_ARCH__ >= 350
T partial_sum = __ldg(input + input_offset) * out_bp;
#else
T partial_sum = input[input_offset] * out_bp;
#endif
T* addr = filter_backprop +
(in_d * filter_rows * filter_cols * filter_length) +
(f_l * filter_rows * filter_cols) + (f_c + filter_cols * f_r);
atomicAdd(addr, partial_sum);
}
}
}
} else {
#pragma unroll
for (int f_l = 0; f_l < filter_length; ++f_l) {
const int in_l = in_l_start + f_l;
#pragma unroll
for (int f_r = 0; f_r < filter_rows; ++f_r) {
const int in_r = in_r_start + f_r;
// Avoid repeated computation.
const int input_offset_temp =
(OB * in_depth * in_length * in_rows * in_cols) +
(OC * in_length * in_rows * in_cols) +
(in_l * in_rows * in_cols) + (in_r * in_cols);
#pragma unroll
for (int f_c = 0; f_c < filter_cols; ++f_c) {
const int in_c = in_c_start + f_c;
if (in_r >= 0 && in_r < in_rows && in_c >= 0 && in_c < in_cols &&
in_l >= 0 && in_l < in_length) {
const int input_offset = input_offset_temp + in_c;
#if __CUDA_ARCH__ >= 350
T partial_sum = __ldg(input + input_offset) * out_bp;
#else
T partial_sum = input[input_offset] * out_bp;
#endif
T* addr = filter_backprop +
(in_d * filter_rows * filter_cols * filter_length) +
(f_l * filter_rows * filter_cols) + (f_c + filter_cols * f_r);
atomicAdd(addr, partial_sum);
}
}
}
}
}
}
}
template <typename T>
__global__ void DepthwiseConv3dBackpropInputGPUKernelNCHW(
const DepthwiseArgs args,
const T* out_backprop,
const T* filter,
T* in_backprop,
int num_in_backprop) {
const int in_rows = args.in_rows;
const int in_cols = args.in_cols;
const int in_length = args.in_length;
const int in_depth = args.in_depth;
const int filter_rows = args.filter_rows;
const int filter_cols = args.filter_cols;
const int filter_length = args.filter_length;
const int stride = args.stride;
const int temporal_stride = args.temporal_stride;
const int pad_rows = args.pad_rows;
const int pad_cols = args.pad_cols;
const int pad_length = args.pad_length;
const int out_rows = args.out_rows;
const int out_cols = args.out_cols;
const int out_length = args.out_length;
const int out_depth = args.out_depth;
CUDA_1D_KERNEL_LOOP(thread_id, num_in_backprop) {
const int IW = thread_id % in_cols;
const int IH = (thread_id / in_cols) % in_rows;
const int IL = (thread_id / in_cols / in_rows) % in_length;
const int IC = (thread_id / in_cols / in_rows / in_length) % in_depth;
const int IB = thread_id / in_cols / in_rows / in_length / in_depth;
T sum = 0;
const int out_r_start =
max(0, (IH - filter_rows + pad_rows + stride) / stride);
const int out_r_end = min(out_rows - 1, (IH + pad_rows) / stride);
const int out_c_start =
max(0, (IW - filter_cols + pad_cols + stride) / stride);
const int out_c_end = min(out_cols - 1, (IW + pad_cols) / stride);
const int out_l_start = max(
0,
(IL - filter_length + pad_length + temporal_stride) / temporal_stride);
const int out_l_end =
min(out_length - 1, (IL + pad_length) / temporal_stride);
#pragma unroll
for (int out_l = out_l_start; out_l <= out_l_end; ++out_l) {
const int f_l = IL + pad_length - out_l * temporal_stride;
for (int out_r = out_r_start; out_r <= out_r_end; ++out_r) {
const int f_r = IH + pad_rows - out_r * stride;
for (int out_c = out_c_start; out_c <= out_c_end; ++out_c) {
const int f_c = IW + pad_cols - out_c * stride;
const int filter_offset =
IC * filter_rows * filter_cols * filter_length +
f_l * filter_cols * filter_rows + f_r * filter_cols + f_c;
const int out_backprop_offset =
(IB * out_depth * out_length * out_rows * out_cols) +
(IC * out_length * out_rows * out_cols) +
(out_l * out_rows * out_cols) + (out_r * out_cols) + (out_c);
#if __CUDA_ARCH__ >= 350
sum += __ldg(out_backprop + out_backprop_offset) *
__ldg(filter + filter_offset);
#else
sum += out_backprop[out_backprop_offset] *
filter[filter_offset];
#endif
}
}
}
const int in_backprop_offset =
(IB * in_rows * in_cols * in_length * in_depth) +
(IC * in_rows * in_cols * in_length) + (IL * in_rows * in_cols) +
(IH * in_cols) + (IW);
in_backprop[in_backprop_offset] = sum;
}
}
class ChannelwiseConv3dOp final : public ConvPoolOpBase<CUDAContext> {
public:
USE_CONV_POOL_BASE_FUNCTIONS(CUDAContext);
ChannelwiseConv3dOp(const OperatorDef& operator_def, Workspace* ws)
: ConvPoolOpBase<CUDAContext>(operator_def, ws),
cudnn_wrapper_(&context_) {
OPERATOR_NEEDS_FEATURE(
this->order_ == StorageOrder::NCHW,
"ChannelwiseConv3dOp only supports NCHW order");
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&bias_desc_));
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&top_desc_for_bias_));
}
~ChannelwiseConv3dOp() {
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(bias_desc_));
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(top_desc_for_bias_));
}
bool RunOnDeviceWithOrderNCHW() override {
const Tensor& X = Input(0);
auto& filter = Input(1);
const int C = X.dim32(1);
CAFFE_ENFORCE_EQ(X.ndim(), filter.ndim());
const int M = filter.dim32(0); // number of output filters
// enforce input/output filters are the same
CAFFE_ENFORCE_EQ(M, X.dim32(1));
CAFFE_ENFORCE_EQ(C, X.dim32(1));
// check group parameters
CAFFE_ENFORCE_EQ(C, this->group_);
CAFFE_ENFORCE_GT(this->group_, 1);
auto sizes = ConvPoolOpBase<CUDAContext>::GetOutputSize(X, filter.dim32(0));
Tensor* Y = Output(0, sizes, at::dtype<float>());
DepthwiseArgs args;
args.batch = X.dim32(0);
args.in_length = X.dim32(2);
args.in_rows = X.dim32(3);
args.in_cols = X.dim32(4);
args.in_depth = X.dim32(1);
CAFFE_ENFORCE_EQ(kernel_.size(), 3);
args.filter_cols = kernel_[2];
args.filter_rows = kernel_[1];
args.filter_length = kernel_[0];
CAFFE_ENFORCE_EQ(stride_.size(), 3);
args.stride = stride_[1];
CAFFE_ENFORCE_EQ(stride_[1], stride_[2]);
args.temporal_stride = stride_[0];
CAFFE_ENFORCE_EQ(pads_.size(), 6);
args.pad_length = pads_[0];
args.pad_rows = pads_[1];
args.pad_cols = pads_[2];
CAFFE_ENFORCE_EQ(Y->dim32(0), X.dim32(0));
args.out_rows = Y->dim32(3);
args.out_cols = Y->dim32(4);
args.out_length = Y->dim32(2);
args.out_depth = Y->dim32(1);
DepthwiseConv3dGPUKernelNCHW<float>
<<<CAFFE_GET_BLOCKS(Y->size()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
args,
X.data<float>(),
filter.data<float>(),
Y->mutable_data<float>(),
Y->size());
if (InputSize() == 3) {
std::vector<int> bias_dims(X.ndim(), 1);
bias_dims[1] = M;
std::vector<int> strides = {M, 1, 1, 1, 1};
CUDNN_ENFORCE(cudnnSetTensorNdDescriptor(
bias_desc_,
cudnnTypeWrapper<float>::type,
X.ndim(),
bias_dims.data(),
strides.data()));
vector<int> dims = {
Y->dim32(0), M, Y->dim32(2), Y->dim32(3), Y->dim32(4)};
strides = {M * Y->dim32(2) * Y->dim32(3) * Y->dim32(4),
Y->dim32(2) * Y->dim32(3) * Y->dim32(4),
Y->dim32(3) * Y->dim32(4),
Y->dim32(4),
1};
CUDNN_ENFORCE(cudnnSetTensorNdDescriptor(
top_desc_for_bias_,
cudnnTypeWrapper<float>::type,
X.ndim(),
dims.data(),
strides.data()));
auto& bias = Input(2);
CAFFE_ENFORCE_EQ(bias.ndim(), 1);
CAFFE_ENFORCE_EQ(bias.dim32(0), M);
CUDNN_ENFORCE(cudnnAddTensor(
cudnn_wrapper_.inline_cudnn_handle(),
cudnnTypeWrapper<float>::kOne(),
bias_desc_,
bias.data<float>(),
cudnnTypeWrapper<float>::kOne(),
top_desc_for_bias_,
Y->mutable_data<float>()));
}
return true;
}
private:
CuDNNWrapper cudnn_wrapper_;
cudnnTensorDescriptor_t bias_desc_;
cudnnTensorDescriptor_t top_desc_for_bias_;
};
class ChannelwiseConv3dGradientOp final : public ConvPoolOpBase<CUDAContext> {
public:
USE_CONV_POOL_BASE_FUNCTIONS(CUDAContext);
ChannelwiseConv3dGradientOp(const OperatorDef& operator_def, Workspace* ws)
: cudnn_wrapper_(&context_),
ConvPoolOpBase<CUDAContext>(operator_def, ws),
no_bias_(OperatorBase::GetSingleArgument<int>("no_bias", 0)) {
CAFFE_ENFORCE(
!(no_bias_ && OutputSize() == 3),
"If bias is not present, you should not have 3 grad output.");
OPERATOR_NEEDS_FEATURE(
this->order_ == StorageOrder::NCHW,
"ChannelwiseConv3dGradientOp only supports NCHW order");
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&bias_desc_));
CUDNN_ENFORCE(cudnnCreateTensorDescriptor(&top_desc_for_bias_));
}
~ChannelwiseConv3dGradientOp() {
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(bias_desc_));
CUDNN_ENFORCE(cudnnDestroyTensorDescriptor(top_desc_for_bias_));
}
bool RunOnDeviceWithOrderNCHW() override {
auto& X = Input(INPUT);
auto& filter = Input(FILTER);
auto& dY = Input(OUTPUT_GRAD);
auto* dfilter = Output(FILTER_GRAD);
const int C = X.dim32(1);
const vector<int> input_dims = this->GetDims(X);
ConvPoolOpBase<CUDAContext>::ComputePads(input_dims);
CAFFE_ENFORCE_EQ(X.ndim(), filter.ndim());
const int M = filter.dim32(0);
CAFFE_ENFORCE(filter.dim32(1) * group_ == C);
CAFFE_ENFORCE(M % group_ == 0);
dfilter->ResizeLike(filter);
DepthwiseArgs args;
args.batch = X.dim32(0);
args.in_rows = X.dim32(3);
args.in_cols = X.dim32(4);
args.in_length = X.dim32(2);
args.in_depth = X.dim32(1);
args.filter_cols = kernel_[2];
args.filter_rows = kernel_[1];
args.filter_length = kernel_[0];
args.stride = stride_[1];
CAFFE_ENFORCE_EQ(stride_[1], stride_[2]);
args.temporal_stride = stride_[0];
args.pad_length = pads_[0];
args.pad_rows = pads_[1];
args.pad_cols = pads_[2];
args.out_rows = dY.dim32(3);
args.out_cols = dY.dim32(4);
args.out_length = dY.dim32(2);
args.out_depth = dY.dim32(1);
CAFFE_ENFORCE(OutputSize() == 3 || (no_bias_ && (OutputSize() == 2)));
auto* dX = Output(no_bias_ ? BIAS_OR_INPUT_GRAD : INPUT_GRAD);
dX->ResizeLike(X);
math::Set<float, CUDAContext>(
dfilter->size(), 0, dfilter->mutable_data<float>(), &context_);
DepthwiseConv3dBackpropFilterGPUKernelNCHW<float>
<<<CAFFE_GET_BLOCKS(dY.size()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
args,
dY.data<float>(),
X.data<float>(),
dfilter->mutable_data<float>(),
dY.size());
DepthwiseConv3dBackpropInputGPUKernelNCHW<float>
<<<CAFFE_GET_BLOCKS(dX->size()),
CAFFE_CUDA_NUM_THREADS,
0,
context_.cuda_stream()>>>(
args,
dY.data<float>(),
filter.data<float>(),
dX->mutable_data<float>(),
dX->size());
if (!no_bias_) {
std::vector<int> bias_dims(X.ndim(), 1);
bias_dims[1] = M;
std::vector<int> strides = {M, 1, 1, 1, 1};
CUDNN_ENFORCE(cudnnSetTensorNdDescriptor(
bias_desc_,
cudnnTypeWrapper<float>::type,
X.ndim(),
bias_dims.data(),
strides.data()));
std::vector<int> dims = {
dY.dim32(0), M, dY.dim32(2), dY.dim32(3), dY.dim32(4)};
strides = {M * dY.dim32(2) * dY.dim32(3) * dY.dim32(4),
dY.dim32(2) * dY.dim32(3) * dY.dim32(4),
dY.dim32(3) * dY.dim32(4),
dY.dim32(4),
1};
CUDNN_ENFORCE(cudnnSetTensorNdDescriptor(
top_desc_for_bias_,
cudnnTypeWrapper<float>::type,
X.ndim(),
dims.data(),
strides.data()));
auto* dbias = Output(BIAS_OR_INPUT_GRAD);
dbias->Resize(M);
CUDNN_ENFORCE(cudnnConvolutionBackwardBias(
cudnn_wrapper_.inline_cudnn_handle(),
cudnnTypeWrapper<float>::kOne(),
top_desc_for_bias_,
dY.data<float>(),
cudnnTypeWrapper<float>::kZero(),
bias_desc_,
dbias->mutable_data<float>()));
}
return true;
}
private:
CuDNNWrapper cudnn_wrapper_;
cudnnTensorDescriptor_t bias_desc_;
cudnnTensorDescriptor_t top_desc_for_bias_;
bool no_bias_;
INPUT_TAGS(INPUT, FILTER, OUTPUT_GRAD);
OUTPUT_TAGS(FILTER_GRAD, BIAS_OR_INPUT_GRAD, INPUT_GRAD);
};
REGISTER_CUDA_OPERATOR_WITH_ENGINE(Conv, CHANNELWISE_3D, ChannelwiseConv3dOp);
REGISTER_CUDA_OPERATOR_WITH_ENGINE(
ConvGradient,
CHANNELWISE_3D,
ChannelwiseConv3dGradientOp);
} // namespace caffe2