forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathblob_serialization.cc
674 lines (631 loc) · 21.7 KB
/
blob_serialization.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
#include "caffe2/core/blob_serialization.h"
#include <sstream>
#include <mutex>
#include "caffe2/core/blob.h"
#include "caffe2/utils/proto_utils.h"
C10_DEFINE_int(
caffe2_tensor_chunk_size,
1000000,
"Chunk size to split tensor data into");
C10_DEFINE_int(
caffe2_max_tensor_serializer_threads,
16,
"Maximal number of threads that can be used for tensor serialization");
C10_DEFINE_bool(
caffe2_serialize_fp16_as_bytes,
false,
"Serialize FLOAT16 tensors using byte_data field");
namespace caffe2 {
/**
* @brief StringSerializer is the serializer for String.
*
* StringSerializer takes in a blob that contains a String, and serializes it
* into a BlobProto protocol buffer.
*/
class StringSerializer : public BlobSerializerBase {
public:
StringSerializer() {}
~StringSerializer() override {}
/**
* Serializes a Blob. Note that this blob has to contain Tensor,
* otherwise this function produces a fatal error.
*/
void Serialize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
SerializationAcceptor acceptor) override {
CAFFE_ENFORCE(typeMeta.Match<std::string>());
BlobProto blob_proto;
blob_proto.set_name(name);
blob_proto.set_type("std::string");
blob_proto.set_content(*static_cast<const std::string*>(pointer));
acceptor(name, SerializeBlobProtoAsString_EnforceCheck(blob_proto));
}
};
/**
* @brief StringDeserializer is the deserializer for Strings.
*
*/
class StringDeserializer : public BlobDeserializerBase {
public:
void Deserialize(const BlobProto& proto, Blob* blob) override {
*blob->GetMutable<std::string>() = proto.content();
}
};
namespace {
void SerializeBlob(
const void* pointer,
TypeMeta typeMeta,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor,
int chunk_size) {
std::unique_ptr<BlobSerializerBase> serializer(
CreateSerializer(typeMeta.id()));
CAFFE_ENFORCE(serializer, "No known serializer for ", typeMeta.name());
serializer->SerializeWithChunkSize(
pointer, typeMeta, name, acceptor, chunk_size);
}
std::string
SerializeBlob(const void* pointer, TypeMeta typeMeta, const string& name) {
std::string data;
BlobSerializerBase::SerializationAcceptor acceptor =
[&data](const std::string&, const std::string& blob_str) {
DCHECK(data.empty()); // should be called once with kNoChunking
data = blob_str;
};
SerializeBlob(pointer, typeMeta, name, acceptor, kNoChunking);
return data;
}
} // namespace
void SerializeBlob(
const Blob& blob,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor,
int chunk_size) {
SerializeBlob(blob.GetRaw(), blob.meta(), name, acceptor, chunk_size);
}
std::string SerializeBlob(const Blob& blob, const string& name) {
return SerializeBlob(blob.GetRaw(), blob.meta(), name);
}
void TensorSerializer::Serialize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor) {
this->SerializeWithChunkSize(
pointer, typeMeta, name, acceptor, kDefaultChunkSize);
}
void TensorSerializer::SerializeWithChunkSize(
const void* pointer,
TypeMeta typeMeta,
const string& name,
BlobSerializerBase::SerializationAcceptor acceptor,
int chunk_size) {
CAFFE_ENFORCE(typeMeta.Match<Tensor>());
const auto& tensor = *static_cast<const Tensor*>(pointer);
if (chunk_size == kNoChunking) {
chunk_size = tensor.numel() + 1; // to account for empty tensors
} else if (chunk_size == kDefaultChunkSize) {
chunk_size = FLAGS_caffe2_tensor_chunk_size;
}
auto processChunk = [&](int64_t chunkStart) {
BlobProto blob_proto;
blob_proto.set_name(name);
blob_proto.set_type(kTensorBlobType);
TensorProto& proto = *blob_proto.mutable_tensor();
proto.set_name(name);
this->Serialize(
tensor, name, blob_proto.mutable_tensor(), chunkStart, chunk_size);
acceptor(
c10::str(name, kChunkIdSeparator, chunkStart / chunk_size),
SerializeBlobProtoAsString_EnforceCheck(blob_proto));
};
#ifndef __ANDROID__
// Poorman's IOBound ThreadPool
SimpleQueue<size_t> chunkQueue;
auto task = [&]() {
size_t chunkStart;
while (chunkQueue.Pop(&chunkStart)) {
processChunk(chunkStart);
}
};
std::vector<std::future<void>> futures;
if (tensor.numel() > chunk_size) {
futures.reserve(FLAGS_caffe2_max_tensor_serializer_threads);
for (int i = 0; i < FLAGS_caffe2_max_tensor_serializer_threads; ++i) {
futures.emplace_back(std::async(std::launch::async, task));
}
}
#endif
VLOG(1) << "Serializing blob " << name;
// Serialize whole vector. If vector is empty, it's shape still needs to be
// serialized in empty proto
for (size_t chunkBegin = 0;
chunkBegin < std::max(tensor.numel(), static_cast<int64_t>(1));
chunkBegin += chunk_size) {
VLOG(2) << "Starting a chunk at " << chunkBegin;
#ifndef __ANDROID__
if (tensor.numel() > chunk_size) {
chunkQueue.Push(chunkBegin);
} else {
// Sync mode for small tensors
processChunk(chunkBegin);
}
#else
// Since Android does not have std::future, we will always do sync mode
processChunk(chunkBegin);
#endif
}
#ifndef __ANDROID__
chunkQueue.NoMoreJobs();
for (auto& fut : futures) {
fut.get();
}
#endif
}
void TensorSerializer::Serialize(
const Tensor& input,
const string& name,
TensorProto* proto_ptr,
size_t chunkBegin,
int32_t chunkSize) {
CAFFE_ENFORCE(
chunkBegin <= input.numel(),
"Chunk begin is out of tensor: ",
chunkBegin,
' ',
input.numel());
if (chunkBegin + chunkSize > input.numel()) {
chunkSize = input.numel() - chunkBegin;
}
if (chunkSize != 0) {
CAFFE_ENFORCE(
input.raw_data(),
"The input does not have data input yet. This is probably because you "
"created a tensor of non-zero shape but never filled its data via "
"mutable_data() calls. This means that it makes no sense to serialize "
"the tensor content.");
} else if (!input.dtype_initialized()) {
C10_LOG_EVERY_MS(WARNING, 1000)
<< "You're trying to serialize tensor with zero numel and no dtype. "
<< "This is a legacy behavior and it WILL BREAK. Contact PyTorch team "
<< "for details. Offending blob name: " << name;
}
TensorProto& proto = *proto_ptr;
proto.mutable_segment()->set_begin(chunkBegin);
proto.mutable_segment()->set_end(chunkBegin + chunkSize);
for (int i = 0; i < input.dim(); ++i) {
proto.add_dims(input.size(i));
}
const TensorProto::DataType data_type = TypeMetaToDataType(input.dtype());
proto.set_data_type(data_type);
StoreDeviceDetail(input, &proto);
// TODO: use CUDAGuard here instead of context and employ explicit sync
// copy
auto uniq_ptr = CreateContext(input.GetDevice());
// A lot of copypaste is error prone. Should we create a macro for this?
switch (data_type) {
case TensorProto_DataType_FLOAT:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<float>() + chunkBegin,
proto.mutable_float_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_INT32:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<int>() + chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_BYTE:
LOG(FATAL) << "This should not happen. When serializing, "
"BYTE is deprecated and moved to UINT8.";
break;
case TensorProto_DataType_STRING: {
proto.mutable_string_data()->Reserve(chunkSize);
const string* content = input.template data<string>();
for (int i = chunkBegin; i < chunkBegin + chunkSize; ++i) {
proto.add_string_data(content[i]);
}
break;
}
case TensorProto_DataType_BOOL:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<bool>() + chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_UINT8:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<uint8_t>() + chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_INT8:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<int8_t>() + chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_UINT16:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<uint16_t>() + chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_INT16:
detail::CopyToProtoWithCast(
chunkSize,
input.template data<int16_t>() + chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_INT64:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<int64_t>() + chunkBegin,
proto.mutable_int64_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_FLOAT16: {
if (FLAGS_caffe2_serialize_fp16_as_bytes) {
const int kValue = 1;
CAFFE_ENFORCE_EQ(
reinterpret_cast<const char*>(&kValue)[0],
1,
"Serialization of FLOAT16 on big endian platform "
"is not written yet.");
unique_ptr<char[]> buffer(new char[2 * chunkSize]);
this->context_->template CopyToCPU<char>(
2 * chunkSize,
reinterpret_cast<const char*>(
input.template data<at::Half>() + chunkBegin),
buffer.get());
this->context_->FinishDeviceComputation();
proto.set_byte_data(buffer.release(), 2 * chunkSize);
} else {
detail::CopyToProtoWithCast(
chunkSize,
reinterpret_cast<const uint16_t*>(input.template data<at::Half>()) +
chunkBegin,
proto.mutable_int32_data(),
uniq_ptr.get());
}
} break;
case TensorProto_DataType_DOUBLE:
detail::CopyToProtoAsIs(
chunkSize,
input.template data<double>() + chunkBegin,
proto.mutable_double_data(),
uniq_ptr.get());
break;
case TensorProto_DataType_UNDEFINED: {
proto.mutable_string_data()->Reserve(chunkSize);
if (chunkSize > 0) {
const char* raw_data = static_cast<const char*>(input.raw_data());
for (int i = chunkBegin; i < chunkBegin + chunkSize; ++i) {
proto.add_string_data(SerializeBlob(
raw_data + i * input.itemsize(), input.dtype(), ""));
}
}
} break;
// Note: we intentially do not provide "default:" so if any new data types
// are added, the compiler should warn the user to add the case here.
}
}
int GetGPUIDForPointer(const void* ptr);
void TensorSerializer::StoreDeviceDetail(
const Tensor& input,
TensorProto* proto) {
ExtractDeviceOption(proto->mutable_device_detail(), input.GetDevice());
}
// The actual serialization registry objects.
C10_DEFINE_TYPED_REGISTRY(
BlobSerializerRegistry,
TypeIdentifier,
BlobSerializerBase,
std::unique_ptr);
C10_DEFINE_REGISTRY(BlobDeserializerRegistry, BlobDeserializerBase);
void DeserializeBlob(const string& content, Blob* result) {
BlobProto blob_proto;
CAFFE_ENFORCE(
blob_proto.ParseFromString(content),
"Cannot parse content into a BlobProto.");
DeserializeBlob(blob_proto, result);
}
void DeserializeBlob(const BlobProto& blob_proto, Blob* result) {
if (blob_proto.type() == kTensorBlobType) {
// This is a tensor object. Depending on the device type, we will
// use the corresponding TensorDeserializer.
auto deserializer = CreateDeserializer(
"Tensor" +
DeviceTypeName(blob_proto.tensor().device_detail().device_type()));
// Tensor's deserializer should always be registered, but we will double
// check if it is not null anyway.
CAFFE_ENFORCE(deserializer.get());
deserializer->Deserialize(blob_proto, result);
} else {
auto deserializer = CreateDeserializer(blob_proto.type());
CAFFE_ENFORCE(
deserializer.get(),
"No registered deserializer for type ",
blob_proto.type());
deserializer->Deserialize(blob_proto, result);
}
}
// === Local helper functions ===
// Get dimensions from Tensor proto
static std::vector<int64_t> DimsFromTensorProto(const TensorProto& proto) {
std::vector<int64_t> dims;
dims.reserve(proto.dims().size());
for (const int64_t d : proto.dims()) {
dims.push_back(d);
}
return dims;
}
// Get number of elements from Tensor proto
static int64_t NumelFromTensorProto(const TensorProto& tensor_proto) {
int64_t numel = 1;
for (const int64_t d : tensor_proto.dims()) {
numel *= d;
}
return numel;
}
// Get data type from Tensor proto
static TypeMeta GetDataType(const TensorProto& tensor_proto) {
TypeMeta dtype;
if (tensor_proto.data_type() != TensorProto_DataType_UNDEFINED) {
dtype = DataTypeToTypeMeta(tensor_proto.data_type());
} else {
Blob temp_blob;
DeserializeBlob(tensor_proto.string_data(0), &temp_blob);
dtype = temp_blob.meta();
}
return dtype;
}
// Get TensorOptions from Tensor proto
// Assumes TensorProto is not empty
static at::TensorOptions TensorOptionsFromProto(
const TensorProto& tensor_proto) {
return at::dtype(GetDataType(tensor_proto))
.device(OptionToDevice(tensor_proto.device_detail()));
}
static std::unique_ptr<BaseContext> ContextFromProto(
const TensorProto& tensor_proto) {
auto device = OptionToDevice(tensor_proto.device_detail());
return CreateContext(device);
}
// === Local helper functions ===
Tensor EmptyTensorFromProto(const TensorProto& tensor_proto) {
auto context = ContextFromProto(tensor_proto);
context->SwitchToDevice();
if (NumelFromTensorProto(tensor_proto) == 0 &&
tensor_proto.data_type() == TensorProto_DataType_UNDEFINED) {
// TODO: remove when serialization of dtype uninitialized tensor is removed
return caffe2::empty(
{0},
at::dtype<float>().device(
OptionToDevice(tensor_proto.device_detail())));
} else {
return caffe2::empty(
DimsFromTensorProto(tensor_proto),
TensorOptionsFromProto(tensor_proto));
}
}
void TensorDeserializer::Deserialize(const BlobProto& blob_proto, Blob* blob) {
auto tensor_proto = blob_proto.tensor();
auto context = ContextFromProto(tensor_proto);
context->SwitchToDevice();
if (NumelFromTensorProto(tensor_proto) == 0 &&
tensor_proto.data_type() == TensorProto_DataType_UNDEFINED) {
// TODO: remove after empty Tensor serialization is forbidden
VLOG(1) << "Deseriralizing an empty Tensor.";
BlobGetMutableTensor(
blob,
{0},
at::dtype<float>().device(
OptionToDevice(tensor_proto.device_detail())));
} else {
DeserializeToTensor(
tensor_proto,
BlobGetMutableTensor(
blob,
DimsFromTensorProto(tensor_proto),
TensorOptionsFromProto(tensor_proto)));
}
}
void TensorDeserializer::DeserializeToTensor(
const TensorProto& tensor_proto,
Tensor* tensor) {
CAFFE_ENFORCE(
tensor->storage_initialized() && tensor->dtype_initialized(),
"Tensor must be initialized before passed into Deserialize function.");
// We create a local context for deserializing. Since Caffe2 contexts are
// usually lightweight, this should not involve too much overhead.
auto uniq_ptr = ContextFromProto(tensor_proto);
// since CopyFromProtoAsIs accepts BaseContext*
auto context = uniq_ptr.get();
context->SwitchToDevice();
int64_t chunkBegin = 0;
auto chunkEnd = tensor->numel();
if (tensor_proto.has_segment()) {
chunkBegin = tensor_proto.segment().begin();
chunkEnd = tensor_proto.segment().end();
}
CAFFE_ENFORCE(
0 <= chunkBegin && chunkBegin <= chunkEnd && chunkEnd <= tensor->numel(),
"Invalid chunk ",
chunkBegin,
' ',
chunkEnd,
" with total tensor size ",
tensor->numel());
auto chunkSize = chunkEnd - chunkBegin;
switch (tensor_proto.data_type()) {
case TensorProto_DataType_FLOAT:
detail::CopyFromProtoAsIs(
chunkSize,
tensor_proto.float_data(),
tensor->template mutable_data<float>() + chunkBegin,
context);
break;
case TensorProto_DataType_INT32:
detail::CopyFromProtoAsIs(
chunkSize,
tensor_proto.int32_data(),
tensor->template mutable_data<int>() + chunkBegin,
context);
break;
case TensorProto_DataType_BYTE:
// Since BYTE stores the data in a string field instead of a repreated
// field we will have it special cased.
CAFFE_ENFORCE_EQ(
chunkSize,
tensor_proto.byte_data().size(),
"Incorrect proto field size.");
context->template CopyToCPU<uint8_t>(
chunkSize,
reinterpret_cast<const uint8_t*>(tensor_proto.byte_data().data()),
tensor->template mutable_data<uint8_t>() + chunkBegin);
break;
case TensorProto_DataType_STRING:
// Special handing of string because it is a non-fundamental type.
{
string* content = tensor->template mutable_data<string>();
for (int i = 0; i < chunkSize; ++i) {
content[i + chunkBegin] = tensor_proto.string_data(i);
}
}
break;
case TensorProto_DataType_BOOL:
detail::CopyFromProtoWithCast(
chunkSize,
tensor_proto.int32_data(),
tensor->template mutable_data<bool>() + chunkBegin,
context);
break;
case TensorProto_DataType_UINT8:
detail::CopyFromProtoWithCast(
chunkSize,
tensor_proto.int32_data(),
tensor->template mutable_data<uint8_t>() + chunkBegin,
context);
break;
case TensorProto_DataType_INT8:
detail::CopyFromProtoWithCast(
chunkSize,
tensor_proto.int32_data(),
tensor->template mutable_data<int8_t>() + chunkBegin,
context);
break;
case TensorProto_DataType_UINT16:
detail::CopyFromProtoWithCast(
chunkSize,
tensor_proto.int32_data(),
tensor->template mutable_data<uint16_t>() + chunkBegin,
context);
break;
case TensorProto_DataType_INT16:
detail::CopyFromProtoWithCast(
chunkSize,
tensor_proto.int32_data(),
tensor->template mutable_data<int16_t>() + chunkBegin,
context);
break;
case TensorProto_DataType_INT64:
detail::CopyFromProtoAsIs(
chunkSize,
tensor_proto.int64_data(),
tensor->template mutable_data<int64_t>() + chunkBegin,
context);
break;
case TensorProto_DataType_FLOAT16:
if (tensor_proto.has_byte_data()) {
const int kValue = 1;
CAFFE_ENFORCE_EQ(
reinterpret_cast<const char*>(&kValue)[0],
1,
"Serialization of FLOAT16 on big endian platform "
"is not written yet.");
CAFFE_ENFORCE_EQ(
2 * chunkSize,
tensor_proto.byte_data().size(),
"Incorrect proto field size.");
context->template CopyToCPU<at::Half>(
chunkSize,
reinterpret_cast<const at::Half*>(tensor_proto.byte_data().data()),
tensor->template mutable_data<at::Half>() + chunkBegin);
} else {
// Backward compatibility with models which used int32_data field
detail::CopyFromProtoWithCast(
chunkSize,
tensor_proto.int32_data(),
reinterpret_cast<uint16_t*>(
tensor->template mutable_data<at::Half>()) +
chunkBegin,
context);
}
break;
case TensorProto_DataType_DOUBLE:
detail::CopyFromProtoAsIs(
chunkSize,
tensor_proto.double_data(),
tensor->template mutable_data<double>() + chunkBegin,
context);
break;
case TensorProto_DataType_UNDEFINED: {
Blob temp_blob;
void* raw_ptr = nullptr;
for (int i = 0; i < chunkSize; ++i) {
DeserializeBlob(tensor_proto.string_data(i), &temp_blob);
if (i == 0) {
raw_ptr = tensor->raw_mutable_data(temp_blob.meta());
}
temp_blob.meta().copy()(
temp_blob.GetRaw(),
static_cast<char*>(raw_ptr) +
(i + chunkBegin) * temp_blob.meta().itemsize(),
1);
}
} break;
// Note: we intentially do not provide "default:" so if any new data types
}
context->FinishDeviceComputation();
}
Tensor TensorDeserializer::Deserialize(const TensorProto& tensor_proto) {
auto tensor = EmptyTensorFromProto(tensor_proto);
DeserializeToTensor(tensor_proto, &tensor);
return tensor;
}
////////////////////////////////////////////////////////////////////////////////
// Serialization Helpers
////////////////////////////////////////////////////////////////////////////////
std::string SerializeAsString_EnforceCheck(
const google::protobuf::MessageLite& msg,
const char* error_location) {
std::string serialize_output;
bool result = msg.SerializeToString(&serialize_output);
if (!error_location) {
CAFFE_ENFORCE(result, "protobuf::SerializeToString failed");
} else {
CAFFE_ENFORCE(result,
"protobuf::SerializeToString failed for ", error_location);
}
return serialize_output;
}
namespace {
// Serialize Tensor
REGISTER_BLOB_SERIALIZER((TypeMeta::Id<Tensor>()), TensorSerializer);
REGISTER_BLOB_DESERIALIZER(TensorCPU, TensorDeserializer);
// Serialize std::string
REGISTER_BLOB_SERIALIZER((TypeMeta::Id<std::string>()), StringSerializer);
REGISTER_BLOB_DESERIALIZER(std::string, StringDeserializer);
} // namespace
} // namespace caffe2