forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathReduceOpsKernel.cu
202 lines (178 loc) · 7.46 KB
/
ReduceOpsKernel.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
#include <ATen/native/SharedReduceOps.h>
#include <ATen/AccumulateType.h>
#include <ATen/Context.h>
#include <ATen/Dispatch.h>
#include <ATen/cuda/NumericLimits.cuh>
#include <ATen/native/cuda/DeviceSqrt.cuh>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/cuda/Reduce.cuh>
#include <ATen/native/DispatchStub.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/ReduceOps.h>
#include <limits>
#include <tuple>
#include <THC/THCNumerics.cuh>
#include <thrust/tuple.h>
#include <thrust/pair.h>
namespace at { namespace native {
template <typename scalar_t, typename acc_t=scalar_t, typename out_t=scalar_t>
void sum_kernel_impl(TensorIterator& iter) {
gpu_reduce_kernel<scalar_t, out_t>(iter, func_wrapper<out_t> ([]GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
return a + b;
}));
}
template <typename scalar_t>
void std_var_kernel_impl(TensorIterator& iter, bool unbiased, bool take_sqrt) {
// reducing unrolling factor to 2 for welford kernel
// This is necessary to lower register usage that leads to register spills.
gpu_reduce_kernel<scalar_t, scalar_t, 2>(iter, WelfordOps<scalar_t, scalar_t, int32_t, float, thrust::tuple<scalar_t, scalar_t>> { unbiased, take_sqrt }, WelfordData<scalar_t, int32_t, float> {});
}
template <>
void std_var_kernel_impl<at::Half>(TensorIterator& iter, bool unbiased, bool take_sqrt) {
// reducing unrolling factor to 2 for welford kernel
// This is necessary to lower register usage that leads to register spills.
gpu_reduce_kernel<at::Half, at::Half, 2>(iter, WelfordOps<at::Half, float, int32_t, float, thrust::tuple<at::Half, at::Half>> { unbiased, take_sqrt }, WelfordData<float, int32_t, float> {});
}
template <typename scalar_t, typename acc_t=scalar_t>
void prod_kernel_impl(TensorIterator& iter) {
gpu_reduce_kernel<scalar_t, scalar_t>(iter, func_wrapper<scalar_t> ([]GPU_LAMBDA(acc_t a, acc_t b) -> acc_t {
return a * b;
}), 1);
}
static void std_var_kernel_cuda(TensorIterator& iter, bool unbiased, bool take_sqrt) {
AT_DISPATCH_FLOATING_TYPES_AND_HALF(iter.dtype(), "std", [&]() {
std_var_kernel_impl<scalar_t>(iter, unbiased, take_sqrt);
});
}
template <typename scalar_t, typename acc_t=scalar_t, typename out_t=scalar_t>
void mean_kernel_impl(TensorIterator& iter) {
float factor = float(iter.num_output_elements()) / iter.numel();
gpu_reduce_kernel<scalar_t, out_t>(iter, MeanOps<acc_t, float> {factor});
}
template <typename scalar_t, typename acc_t=scalar_t, typename out_t=scalar_t>
void norm_kernel_cuda_impl(TensorIterator& iter, Scalar val) {
float p;
if (val.isIntegral(false)) {
p = val.to<int64_t>();
} else if (val.isFloatingPoint()) {
p = val.to<acc_t>();
} else {
AT_ERROR("norm_kernel_cuda_impl expects norm to be integer or float");
}
if (p == static_cast<float>(0)) {
gpu_reduce_kernel<scalar_t, out_t>(iter, NormZeroOps<acc_t>(), 0);
} else if (p == static_cast<float>(1)) {
gpu_reduce_kernel<scalar_t, out_t>(iter, NormOneOps<acc_t>(), 0);
} else if (p == static_cast<float>(INFINITY)) {
gpu_reduce_kernel<scalar_t, out_t>(iter, AbsMaxOps<acc_t>(), std::numeric_limits<acc_t>::min());
} else if (p == static_cast<float>(-INFINITY)) {
gpu_reduce_kernel<scalar_t, out_t>(iter, AbsMinOps<acc_t>(), std::numeric_limits<acc_t>::max());
} else {
gpu_reduce_kernel<scalar_t, out_t>(iter, NormOps<acc_t>{ acc_t(p) }, 0);
}
}
static void sum_kernel_cuda(TensorIterator& iter) {
if (iter.dtype() == kHalf) {
return sum_kernel_impl<at::Half, float>(iter);
} else if (iter.dtype(1) == kHalf && iter.dtype() == kFloat) {
// type promotion that does cast and reduction in a single kernel
return sum_kernel_impl<at::Half, float, float>(iter);
}
AT_DISPATCH_ALL_TYPES_AND(ScalarType::Bool, iter.dtype(), "sum_cuda", [&]() {
sum_kernel_impl<scalar_t>(iter);
});
}
static void prod_kernel_cuda(TensorIterator& iter) {
if (iter.dtype() == kHalf) {
return prod_kernel_impl<at::Half, float>(iter);
}
AT_DISPATCH_ALL_TYPES(iter.dtype(), "prod_cuda", [&]() {
prod_kernel_impl<scalar_t>(iter);
});
}
static void mean_kernel_cuda(TensorIterator& iter) {
if (iter.dtype() == kHalf) {
return mean_kernel_impl<at::Half, float>(iter);
} else if (iter.dtype(1) == kHalf && iter.dtype() == kFloat) {
// type promotion that does cast and reduction in a single kernel
return mean_kernel_impl<at::Half, float, float>(iter);
}
AT_DISPATCH_ALL_TYPES(iter.dtype(), "mean_cuda", [&]() {
mean_kernel_impl<scalar_t>(iter);
});
}
static void norm_kernel_cuda(TensorIterator& iter, Scalar p) {
if (iter.dtype() == kHalf) {
return norm_kernel_cuda_impl<at::Half, float>(iter, p);
} else if (iter.dtype(1) == kHalf && iter.dtype() == kFloat) {
// type promotion that does cast and reduction in a single kernel
return norm_kernel_cuda_impl<at::Half, float, float>(iter, p);
}
AT_DISPATCH_FLOATING_TYPES(iter.dtype(), "norm_cuda", [&]() {
norm_kernel_cuda_impl<scalar_t>(iter, p);
});
}
void and_kernel_cuda(TensorIterator& iter) {
gpu_reduce_kernel<uint8_t, uint8_t>(
iter, func_wrapper<uint8_t> ([]GPU_LAMBDA(uint8_t a, uint8_t b) -> uint8_t {
return a && b;
}), true);
}
void or_kernel_cuda(TensorIterator& iter) {
gpu_reduce_kernel<uint8_t, uint8_t>(
iter, func_wrapper<uint8_t> ([]GPU_LAMBDA(uint8_t a, uint8_t b) -> uint8_t {
return a || b;
}), false);
}
template <typename scalar_t>
void max_values_kernel_cuda_impl(TensorIterator& iter) {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter, func_wrapper<scalar_t> ([]GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
return (THCNumerics<scalar_t>::isnan(a) || a > b) ? a : b;
}), at::numeric_limits<scalar_t>::lower_bound());
}
template <typename scalar_t>
void min_values_kernel_cuda_impl(TensorIterator& iter) {
gpu_reduce_kernel<scalar_t, scalar_t>(
iter, func_wrapper<scalar_t> ([]GPU_LAMBDA(scalar_t a, scalar_t b) -> scalar_t {
return (THCNumerics<scalar_t>::isnan(a) || a < b) ? a : b;
}), at::numeric_limits<scalar_t>::upper_bound());
}
void max_values_kernel_cuda(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES(iter.dtype(), "max_values_cuda", [&]() {
max_values_kernel_cuda_impl<scalar_t>(iter);
});
}
void min_values_kernel_cuda(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES(iter.dtype(), "min_values_cuda", [&]() {
min_values_kernel_cuda_impl<scalar_t>(iter);
});
}
void argmax_kernel_cuda(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES(iter.dtype(1), "argmax_cuda", [&]() {
gpu_reduce_kernel<scalar_t, int64_t>(
iter,
ArgMaxOps<scalar_t>{},
thrust::pair<scalar_t, int64_t>(at::numeric_limits<scalar_t>::lower_bound(), 0));
});
}
void argmin_kernel_cuda(TensorIterator& iter) {
AT_DISPATCH_ALL_TYPES(iter.dtype(1), "argmin_cuda", [&]() {
gpu_reduce_kernel<scalar_t, int64_t>(
iter,
ArgMinOps<scalar_t>{},
thrust::pair<scalar_t, int64_t>(at::numeric_limits<scalar_t>::upper_bound(), 0));
});
}
REGISTER_DISPATCH(std_var_stub, &std_var_kernel_cuda);
REGISTER_DISPATCH(sum_stub, &sum_kernel_cuda);
REGISTER_DISPATCH(prod_stub, &prod_kernel_cuda);
REGISTER_DISPATCH(mean_stub, &mean_kernel_cuda);
REGISTER_DISPATCH(norm_stub, &norm_kernel_cuda);
REGISTER_DISPATCH(and_stub, &and_kernel_cuda);
REGISTER_DISPATCH(or_stub, &or_kernel_cuda);
REGISTER_DISPATCH(max_values_stub, &max_values_kernel_cuda);
REGISTER_DISPATCH(min_values_stub, &min_values_kernel_cuda);
REGISTER_DISPATCH(argmax_stub, &argmax_kernel_cuda);
REGISTER_DISPATCH(argmin_stub, &argmin_kernel_cuda);
}} // namespace at::native