forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
RangeFactories.cu
193 lines (167 loc) · 7.08 KB
/
RangeFactories.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
#include <ATen/Dispatch.h>
#include <ATen/NativeFunctions.h>
#include <ATen/AccumulateType.h>
#include <ATen/cuda/Exceptions.h>
#include <ATen/cuda/CUDAContext.h>
#include <cmath>
#include <limits>
#include <thrust/device_ptr.h>
#include <thrust/sequence.h>
#include <thrust/execution_policy.h>
namespace at {
namespace native {
template<typename T, typename accT = T>
struct LinspaceOp {
__host__ __device__ LinspaceOp(accT start, accT step):
start_(start), step_(step) { }
__device__ __forceinline__ T operator()(ptrdiff_t index) {
accT increment = step_ * static_cast<accT>(index);
accT value = start_ + increment;
return static_cast<T>(value);
}
const accT start_, step_;
};
template<typename T, typename accT = T>
struct LogspaceOp {
__host__ __device__ LogspaceOp(accT start, accT step, accT base):
start_(start), step_(step), base_(base) { }
__device__ __forceinline__ T operator()(ptrdiff_t index) {
accT increment = step_ * static_cast<accT>(index);
accT value = std::pow(base_, start_ + increment);
return static_cast<T>(value);
}
const accT start_, step_, base_;
};
Tensor& linspace_cuda_out(Tensor& result, Scalar start, Scalar end, int64_t steps) {
TORCH_CHECK(steps >= 0, "number of steps must be non-negative");
if (result.numel() != steps) {
result.resize_({steps});
}
Tensor r = result.is_contiguous() ? result : result.contiguous();
if (steps == 0) {
// skip
} else if (steps == 1) {
r.fill_(start);
} else {
AT_DISPATCH_FLOATING_TYPES(r.scalar_type(), "linspace_cuda", [&]() {
scalar_t scalar_start = start.to<scalar_t>();
scalar_t scalar_end = end.to<scalar_t>();
scalar_t step = (scalar_end - scalar_start) / static_cast<scalar_t>(steps - 1);
LinspaceOp<scalar_t> linspace_method(scalar_start, step);
thrust::device_ptr<scalar_t> data_(r.data_ptr<scalar_t>());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
auto policy = thrust::cuda::par.on(stream);
thrust::tabulate(policy, data_, data_ + steps, linspace_method);
});
}
if (!result.is_contiguous()) {
result.copy_(r);
}
AT_CUDA_CHECK(cudaGetLastError());
return result;
}
Tensor& logspace_cuda_out(Tensor& result, Scalar start, Scalar end, int64_t steps, double base) {
TORCH_CHECK(steps >= 0, "number of steps must be non-negative");
if (result.numel() != steps) {
result.resize_({steps});
}
Tensor r = result.is_contiguous() ? result : result.contiguous();
if (steps == 0) {
// skip
} else if (steps == 1) {
r.fill_(std::pow(base, start.to<double>()));
} else {
AT_DISPATCH_FLOATING_TYPES(r.scalar_type(), "logspace_cuda", [&]() {
scalar_t scalar_base = static_cast<scalar_t>(base);
scalar_t scalar_start = start.to<scalar_t>();
scalar_t scalar_end = end.to<scalar_t>();
scalar_t step = (scalar_end - scalar_start) / static_cast<scalar_t>(steps - 1);
LogspaceOp<scalar_t> logspace_method(scalar_start, step, scalar_base);
thrust::device_ptr<scalar_t> data_(r.data_ptr<scalar_t>());
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
auto policy = thrust::cuda::par.on(stream);
thrust::tabulate(policy, data_, data_ + steps, logspace_method);
});
}
if (!result.is_contiguous()) {
result.copy_(r);
}
AT_CUDA_CHECK(cudaGetLastError());
return result;
}
Tensor& range_cuda_out(Tensor& result, Scalar start, Scalar end, Scalar step) {
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half, result.scalar_type(), "range_cuda", [&]() {
using accscalar_t = at::acc_type<scalar_t, true>;
auto xstart = start.to<accscalar_t>();
auto xend = end.to<accscalar_t>();
auto xstep = step.to<accscalar_t>();
TORCH_CHECK(xstep > 0 || xstep < 0, "step must be nonzero");
TORCH_CHECK(std::isfinite(static_cast<double>(xstart)) &&
std::isfinite(static_cast<double>(xend)),
"unsupported range: ", xstart, " -> ", xend);
TORCH_CHECK(((xstep > 0) && (xend >= xstart)) || ((xstep < 0) && (xend <= xstart)),
"upper bound and larger bound inconsistent with step sign");
int64_t size = static_cast<int64_t>(((xend - xstart) / xstep) + 1);
if (result.numel() != size) {
result.resize_({size});
}
Tensor r = result.is_contiguous() ? result : result.contiguous();
LinspaceOp<scalar_t, accscalar_t> linspace_method(xstart, xstep);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
auto policy = thrust::cuda::par.on(stream);
thrust::device_ptr<scalar_t> data_ptr(r.data_ptr<scalar_t>());
thrust::tabulate(policy, data_ptr, data_ptr + size, linspace_method);
if (!result.is_contiguous()) {
result.copy_(r);
}
});
AT_CUDA_CHECK(cudaGetLastError());
return result;
}
Tensor& arange_cuda_out(Tensor& result, Scalar start, Scalar end, Scalar step) {
AT_DISPATCH_ALL_TYPES_AND(at::ScalarType::Half, result.scalar_type(), "arange_cuda", [&]() {
using accscalar_t = at::acc_type<scalar_t, true>;
auto xstart = start.to<accscalar_t>();
auto xend = end.to<accscalar_t>();
auto xstep = step.to<accscalar_t>();
// we use double precision for (start - end) / step
// to compute size_d for consistency across devices.
// The problem with using accscalar_t is that accscalar_t might be float32 on gpu for a float32 scalar_t,
// but double on cpu for the same,
// and the effective output size starts differing on CPU vs GPU because of precision issues, which
// we dont want.
// the corner-case we do want to take into account is int64_t, which has higher precision than double
double size_d;
if (std::is_same<scalar_t, int64_t>::value) {
size_d = std::ceil(static_cast<double>(end.to<accscalar_t>() - start.to<accscalar_t>())
/ step.to<accscalar_t>());
} else {
size_d = std::ceil(static_cast<double>(end.to<double>() - start.to<double>())
/ step.to<double>());
}
TORCH_CHECK(xstep > 0 || xstep < 0, "step must be nonzero");
TORCH_CHECK(std::isfinite(static_cast<double>(xstart)) &&
std::isfinite(static_cast<double>(xend)),
"unsupported range: ", xstart, " -> ", xend);
TORCH_CHECK(((xstep > 0) && (xend >= xstart)) || ((xstep < 0) && (xend <= xstart)),
"upper bound and larger bound inconsistent with step sign");
TORCH_CHECK(size_d >= 0 && size_d <= static_cast<double>(std::numeric_limits<int64_t>::max()),
"invalid size, possible overflow?");
int64_t size = static_cast<int64_t>(size_d);
if (result.numel() != size) {
result.resize_({size});
}
Tensor r = result.is_contiguous() ? result : result.contiguous();
LinspaceOp<scalar_t, accscalar_t> linspace_method(xstart, xstep);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
auto policy = thrust::cuda::par.on(stream);
thrust::device_ptr<scalar_t> data_ptr(r.data_ptr<scalar_t>());
thrust::tabulate(policy, data_ptr, data_ptr + size, linspace_method);
if (!result.is_contiguous()) {
result.copy_(r);
}
});
AT_CUDA_CHECK(cudaGetLastError());
return result;
}
}} // namespace at::native