forked from pytorch/pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
NaiveDilatedConvolution.cu
600 lines (572 loc) · 18.6 KB
/
NaiveDilatedConvolution.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
#include <ATen/cuda/CUDABlas.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/native/DilatedConvolutionUtils.h>
#include <ATen/cuda/CUDAApplyUtils.cuh>
#include <tuple>
#include "ATen/ATen.h"
#include "ATen/native/cuda/im2col.cuh"
#include "ATen/native/cuda/vol2col.cuh"
namespace at {
namespace native {
namespace {
// hyper-volume to column, CUDA
template <typename Dtype, int64_t dim>
void hvol2col(
cudaStream_t stream,
const Dtype* data_hvol,
const int channels,
const IntArrayRef input_size,
const IntArrayRef output_size,
const IntArrayRef kernel_size,
const IntArrayRef stride_size,
const IntArrayRef pad_size,
const IntArrayRef dilation_size,
Dtype* data_col) {
if (dim == 3) {
vol2col<Dtype>(
stream,
data_hvol,
channels,
input_size[0],
input_size[1],
input_size[2],
output_size[0],
output_size[1],
output_size[2],
kernel_size[0],
kernel_size[1],
kernel_size[2],
pad_size[0],
pad_size[1],
pad_size[2],
stride_size[0],
stride_size[1],
stride_size[2],
dilation_size[0],
dilation_size[1],
dilation_size[2],
data_col);
}
if (dim == 2) {
im2col<Dtype>(
stream,
data_hvol,
channels,
input_size[0],
input_size[1],
output_size[0],
output_size[1],
kernel_size[0],
kernel_size[1],
pad_size[0],
pad_size[1],
stride_size[0],
stride_size[1],
dilation_size[0],
dilation_size[1],
data_col);
}
}
// column to hyper-volume, CUDA
template <typename Dtype, int64_t dim>
void col2hvol(
cudaStream_t stream,
const Dtype* data_col,
const int channels,
const IntArrayRef input_size,
const IntArrayRef output_size,
const IntArrayRef kernel_size,
const IntArrayRef stride_size,
const IntArrayRef pad_size,
const IntArrayRef dilation_size,
Dtype* data_hvol) {
if (dim == 3) {
col2vol<Dtype, Dtype>(
stream,
data_col,
channels,
input_size[0],
input_size[1],
input_size[2],
output_size[0],
output_size[1],
output_size[2],
kernel_size[0],
kernel_size[1],
kernel_size[2],
pad_size[0],
pad_size[1],
pad_size[2],
stride_size[0],
stride_size[1],
stride_size[2],
dilation_size[0],
dilation_size[1],
dilation_size[2],
data_hvol);
}
if (dim == 2) {
col2im<Dtype, Dtype>(
stream,
data_col,
channels,
input_size[0],
input_size[1],
output_size[0],
output_size[1],
kernel_size[0],
kernel_size[1],
pad_size[0],
pad_size[1],
stride_size[0],
stride_size[1],
dilation_size[0],
dilation_size[1],
data_hvol);
}
}
/*
check tensor data locations
*/
void slow_conv_dilated_location_check(
const Tensor& input,
const Tensor& weight,
const Tensor& bias,
const Tensor& grad_output) {
// checking data locations of user-provided tensor arguments
TensorArg input_arg{input, "input", 2}, weight_arg{weight, "weight", 3},
bias_arg{bias, "bias", 4}, grad_output_arg{grad_output, "grad_output", 5};
checkAllSameGPU("slow_conv_dilated_all_cuda_template", {input_arg, weight_arg});
if (bias.defined()) {
checkAllSameGPU("slow_conv_dilated_all_cuda_template", {input_arg, bias_arg});
}
if (grad_output.defined()) {
checkAllSameGPU(
"slow_conv_dilated_all_cuda_template", {input_arg, grad_output_arg});
}
// we are not checking the data locations of other tensor
// arguments such as output, grad_input, etc because of these are
// allocated based on input options and hence these tensors always
// have the same data location as of input tensor.
}
/*
slow_conv_dilated_all_cuda_template
Main worker. Computes tensors output, grad_input, grad_weight,
and/or grad_bias if defined, respectively.
*/
template <int64_t dim>
void slow_conv_dilated_all_cuda_template(
Tensor& output,
const Tensor& input,
const Tensor& weight,
const Tensor& bias,
const Tensor& grad_output,
Tensor& grad_input,
Tensor& grad_weight,
Tensor& grad_bias,
IntArrayRef kernel_size,
IntArrayRef stride_size,
IntArrayRef pad_size,
IntArrayRef dilation_size) {
slow_conv_dilated_location_check(input, weight, bias, grad_output);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
auto options = input.options();
// The rear part of input tensor sizes:
auto input_size = input.sizes().slice(2);
// The rear part of output tensor sizes:
auto output_size = internal::get_output_size<dim>(
input, kernel_size, stride_size, pad_size, dilation_size);
int64_t batchSize = input.size(0);
int64_t nInputPlane = weight.size(1);
int64_t nOutputPlane = weight.size(0);
// Temporary buffers:
int64_t m = std::accumulate(
kernel_size.begin(), kernel_size.end(), 1, std::multiplies<int64_t>());
int64_t output_vsize = std::accumulate(
output_size.begin(), output_size.end(), 1, std::multiplies<int64_t>());
Tensor columns = at::empty({0}, options);
if (output.defined() || grad_weight.defined() || grad_input.defined()) {
columns.resize_({nInputPlane * m, output_vsize});
}
// Initialize
if (grad_weight.defined()) {
grad_weight.zero_();
}
if (grad_bias.defined()) {
grad_bias.zero_();
}
if (output.defined() && !bias.defined()) {
output.zero_();
}
#ifdef __HIP_PLATFORM_HCC__
/* When using ROCm, the sum evaluation is inaccurate for double
tensors. The reason is currently unknown. Hence, we use gemv for
computing `grad_output_n.sum(dims)` until the ROCm-sum issue is
resolved. */
Tensor ones = at::empty({0}, options);
if (grad_bias.defined()) {
ones.resize_({output_vsize});
ones.fill_(1);
}
/* MSVC does not like #ifdef-s inside the CPP macro
AT_DISPATCH_FLOATING_TYPES_AND_HALF. So, we define the code
branching outside the CPP macro: */
#define CALCULATE_GRAD_BIAS \
at::cuda::blas::gemv<scalar_t>( \
stream, \
/*trans=*/'t', \
/* m=*/output_vsize, \
/* n=*/nOutputPlane, \
/*alpha=*/ScalarConvert<int, scalar_t>::to(1), \
/* A=*/grad_output_n.data_ptr<scalar_t>(), \
/* lda=*/output_vsize, \
/* x=*/ones.data_ptr<scalar_t>(), \
/* incx=*/1, \
/* beta=*/ScalarConvert<int, scalar_t>::to(1), \
/* y=*/grad_bias.data_ptr<scalar_t>(), \
/* incy=*/1)
#else
#define CALCULATE_GRAD_BIAS grad_bias += grad_output_n.sum(dims)
#endif
// Helpers
Tensor grad_output_n;
std::vector<int64_t> dims(dim);
std::iota(dims.begin(), dims.end(), 1);
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
input.scalar_type(), "slow_conv_dilated<>", [&] {
// For each elt in batch, do:
for (int elt = 0; elt < batchSize; elt++) {
// Matrix multiply per output:
Tensor input_n = input.select(0, elt);
// Output
if (output.defined()) {
Tensor output_n = output.select(0, elt);
if (bias.defined()) {
/* For gemm argument derivation, see
slow_conv_dilated_all_cuda_template in
ATen/native/DilatedConvolution.cpp */
for (int n = 0; n < nOutputPlane; n++) {
output_n.select(0, n).fill_(bias[n]);
}
}
// Extract columns:
hvol2col<scalar_t, dim>(
stream,
input_n.data_ptr<scalar_t>(),
nInputPlane,
input_size,
output_size,
kernel_size,
stride_size,
pad_size,
dilation_size,
columns.data_ptr<scalar_t>());
/* For gemm argument derivation, see
slow_conv_dilated_all_cuda_template in
ATen/native/DilatedConvolution.cpp */
at::cuda::blas::gemm<scalar_t>(
stream,
/*transa=*/'n',
/*transb=*/'n',
/* m=*/columns.size(1),
/* n=*/nOutputPlane,
/* k=*/columns.size(0),
/* alpha=*/ScalarConvert<int, scalar_t>::to(1),
/* A=*/columns.data_ptr<scalar_t>(),
/* lda=*/columns.size(1),
/* B=*/weight.data_ptr<scalar_t>(),
/* ldb=*/columns.size(0),
/* beta=*/ScalarConvert<int, scalar_t>::to(1),
/* C=*/output_n.data_ptr<scalar_t>(),
/* ldc=*/columns.size(1));
} else {
// All gradients
grad_output_n = grad_output.select(0, elt);
}
// Gradient of input:
if (grad_input.defined()) {
/* For gemm argument derivation, see
slow_conv_dilated_all_cuda_template in
ATen/native/DilatedConvolution.cpp */
at::cuda::blas::gemm<scalar_t>(
stream,
/*transa=*/'n',
/*transb=*/'t',
/* m=*/columns.size(1),
/* n=*/columns.size(0),
/* k=*/nOutputPlane,
/* alpha=*/ScalarConvert<int, scalar_t>::to(1),
/* A=*/grad_output_n.data_ptr<scalar_t>(),
/* lda=*/columns.size(1),
/* B=*/weight.data_ptr<scalar_t>(),
/* ldb=*/columns.size(0),
/* beta=*/ScalarConvert<int, scalar_t>::to(0),
/* C=*/columns.data_ptr<scalar_t>(),
/* ldc=*/columns.size(1));
// Unpack columns back into input:
Tensor grad_input_n = grad_input.select(0, elt);
col2hvol<scalar_t, dim>(
stream,
columns.data_ptr<scalar_t>(),
nInputPlane,
input_size,
output_size,
kernel_size,
stride_size,
pad_size,
dilation_size,
grad_input_n.data_ptr<scalar_t>());
}
// Gradient of weight:
if (grad_weight.defined()) {
// Extract columns:
hvol2col<scalar_t, dim>(
stream,
input_n.data_ptr<scalar_t>(),
nInputPlane,
input_size,
output_size,
kernel_size,
stride_size,
pad_size,
dilation_size,
columns.data_ptr<scalar_t>());
scalar_t scale = ScalarConvert<int, scalar_t>::to(
1); // TODO: expose as argument?
/* For gemm argument derivation, see
slow_conv_dilated_all_cuda_template in
ATen/native/DilatedConvolution.cpp */
at::cuda::blas::gemm<scalar_t>(
stream,
/*transa=*/'t',
/*transb=*/'n',
/* m=*/columns.size(0),
/* n=*/nOutputPlane,
/* k=*/columns.size(1),
/* alpha=*/scale,
/* A=*/columns.data_ptr<scalar_t>(),
/* lda=*/columns.size(1),
/* B=*/grad_output_n.data_ptr<scalar_t>(),
/* ldb=*/columns.size(1),
/* beta=*/ScalarConvert<int, scalar_t>::to(1),
/* C=*/grad_weight.data_ptr<scalar_t>(),
/* ldc=*/columns.size(0));
}
// Gradient of bias:
if (grad_bias.defined()) {
/* For gemv argument derivation, see
slow_conv_dilated_all_cpu_template in
ATen/native/DilatedConvolution.cpp */
CALCULATE_GRAD_BIAS; /* MSVC does not like #ifdef-s
inside the CPP macros, see above. */
/*
TODO: when scale != 1 is introduced then use:
grad_bias += scale * grad_output_n.sum(dims);
*/
}
}
});
} // slow_conv_dilated_all_cuda_template
} // namespace
Tensor slow_conv_dilated2d_cuda(
const Tensor& input,
const Tensor& weight,
IntArrayRef kernel_size,
const Tensor& bias,
IntArrayRef stride_size,
IntArrayRef pad_size,
IntArrayRef dilation_size) {
Tensor undefined;
internal::slow_conv_dilated_shape_check<2>(
input,
weight,
bias,
undefined,
kernel_size,
stride_size,
pad_size,
dilation_size);
auto is_batch = input.dim() == 4;
auto options = input.options();
// calculate output tensor size
auto output_size = internal::get_output_size<2>(
input, weight, kernel_size, stride_size, pad_size, dilation_size);
// template function assumes batched tensors. unsqueeze(0) will
// insert batch dimension without affecting the original tensor.
const Tensor input_ =
(is_batch ? input.contiguous() : input.contiguous().unsqueeze(0));
const Tensor weight_ = weight.contiguous();
const Tensor bias_ = (bias.defined() ? bias.contiguous() : undefined);
Tensor output = at::empty(output_size, options);
Tensor output_ = (is_batch ? output : output.unsqueeze(0));
slow_conv_dilated_all_cuda_template<2>(
output_,
input_,
weight_,
bias_,
undefined,
undefined,
undefined,
undefined,
kernel_size,
stride_size,
pad_size,
dilation_size);
return output;
}
std::tuple<Tensor, Tensor, Tensor> slow_conv_dilated2d_backward_cuda(
const Tensor& grad_output,
const Tensor& input,
const Tensor& weight,
IntArrayRef kernel_size,
IntArrayRef stride_size,
IntArrayRef pad_size,
IntArrayRef dilation_size,
const std::array<bool, 3ul> output_mask) {
Tensor undefined;
internal::slow_conv_dilated_shape_check<2>(
input,
weight,
undefined,
grad_output,
kernel_size,
stride_size,
pad_size,
dilation_size);
auto is_batch = input.dim() == 4;
auto options = grad_output.options();
// template function assumes batched tensors. unsqueeze(0) will
// insert batch dimension without affecting the original tensor.
const Tensor grad_output_ =
(is_batch ? grad_output.contiguous()
: grad_output.contiguous().unsqueeze(0));
const Tensor input_ =
(is_batch ? input.contiguous() : input.contiguous().unsqueeze(0));
const Tensor weight_ = weight.contiguous();
// compute only gradients for which the corresponding output_mask is true:
Tensor grad_input =
(output_mask[0] ? at::empty(input.sizes(), options) : undefined);
Tensor grad_weight =
(output_mask[1] ? at::empty(weight.sizes(), options) : undefined);
Tensor grad_bias =
(output_mask[2] ? at::empty(weight.size(0), options) : undefined);
Tensor grad_input_ =
(output_mask[0] ? (is_batch ? grad_input : grad_input.unsqueeze(0))
: undefined);
slow_conv_dilated_all_cuda_template<2>(
undefined,
input_,
weight_,
undefined,
grad_output_,
grad_input,
grad_weight,
grad_bias,
kernel_size,
stride_size,
pad_size,
dilation_size);
return std::tie(grad_input, grad_weight, grad_bias);
}
Tensor slow_conv_dilated3d_cuda(
const Tensor& input,
const Tensor& weight,
IntArrayRef kernel_size,
const Tensor& bias,
IntArrayRef stride_size,
IntArrayRef pad_size,
IntArrayRef dilation_size) {
Tensor undefined;
internal::slow_conv_dilated_shape_check<3>(
input,
weight,
bias,
undefined,
kernel_size,
stride_size,
pad_size,
dilation_size);
auto is_batch = input.dim() == 5;
auto options = input.options();
// calculate output tensor size
auto output_size = internal::get_output_size<3>(
input, weight, kernel_size, stride_size, pad_size, dilation_size);
// template function assumes batched tensors. unsqueeze(0) will
// insert batch dimension without affecting the original tensor.
const Tensor input_ =
(is_batch ? input.contiguous() : input.contiguous().unsqueeze(0));
const Tensor weight_ = weight.contiguous();
const Tensor bias_ = (bias.defined() ? bias.contiguous() : undefined);
Tensor output = at::empty(output_size, options);
Tensor output_ = (is_batch ? output : output.unsqueeze(0));
slow_conv_dilated_all_cuda_template<3>(
output,
input_,
weight_,
bias_,
undefined,
undefined,
undefined,
undefined,
kernel_size,
stride_size,
pad_size,
dilation_size);
return output;
}
std::tuple<Tensor, Tensor, Tensor> slow_conv_dilated3d_backward_cuda(
const Tensor& grad_output,
const Tensor& input,
const Tensor& weight,
IntArrayRef kernel_size,
IntArrayRef stride_size,
IntArrayRef pad_size,
IntArrayRef dilation_size,
const std::array<bool, 3ul> output_mask) {
Tensor undefined;
internal::slow_conv_dilated_shape_check<3>(
input,
weight,
undefined,
grad_output,
kernel_size,
stride_size,
pad_size,
dilation_size);
auto is_batch = input.dim() == 5;
auto options = grad_output.options();
// template function assumes batched tensors. unsqueeze(0) will
// insert batch dimension without affecting the original tensor.
const Tensor grad_output_ =
(is_batch ? grad_output.contiguous()
: grad_output.contiguous().unsqueeze(0));
const Tensor input_ =
(is_batch ? input.contiguous() : input.contiguous().unsqueeze(0));
const Tensor weight_ = weight.contiguous();
// compute only gradients for which the corresponding output_mask is true:
Tensor grad_input =
(output_mask[0] ? at::empty(input.sizes(), options) : undefined);
Tensor grad_weight =
(output_mask[1] ? at::empty(weight.sizes(), options) : undefined);
Tensor grad_bias =
(output_mask[2] ? at::empty(weight.size(0), options) : undefined);
Tensor grad_input_ =
(output_mask[0] ? (is_batch ? grad_input : grad_input.unsqueeze(0))
: undefined);
slow_conv_dilated_all_cuda_template<3>(
undefined,
input_,
weight_,
undefined,
grad_output_,
grad_input,
grad_weight,
grad_bias,
kernel_size,
stride_size,
pad_size,
dilation_size);
return std::tie(grad_input, grad_weight, grad_bias);
}
} // namespace native
} // namespace at