forked from robotology/idyntree
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.cpp
205 lines (159 loc) · 6.79 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
/**
* @ingroup idyntree_tutorials
*
* A tutorial on how to use the KinDynComputations class
* with Eigen data structures.
*
* \author Silvio Traversaro
*
* CopyPolicy: Released under the terms of LGPL 2.0+ or later
*/
// C headers
#include <cstdlib>
// Eigen headers
#include <Eigen/Core>
// iDynTree headers
#include <iDynTree/Model/FreeFloatingState.h>
#include <iDynTree/KinDynComputations.h>
#include <iDynTree/ModelIO/ModelLoader.h>
// Helpers function to convert between
// iDynTree datastructures
#include <iDynTree/Core/EigenHelpers.h>
/**
* Struct containing the floating robot state
* using Eigen data structures.
*/
struct EigenRobotState
{
void resize(int nrOfInternalDOFs)
{
jointPos.resize(nrOfInternalDOFs);
jointVel.resize(nrOfInternalDOFs);
}
void random()
{
world_H_base.setIdentity();
jointPos.setRandom();
baseVel.setRandom();
jointVel.setRandom();
gravity[0] = 0;
gravity[1] = 0;
gravity[2] = -9.8;
}
Eigen::Matrix4d world_H_base;
Eigen::VectorXd jointPos;
Eigen::Matrix<double,6,1> baseVel;
Eigen::VectorXd jointVel;
Eigen::Vector3d gravity;
// See https://eigen.tuxfamily.org/dox/group__TopicStructHavingEigenMembers.html
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
struct EigenRobotAcceleration
{
void resize(int nrOfInternalDOFs)
{
jointAcc.resize(nrOfInternalDOFs);
}
void random()
{
baseAcc.setRandom();
jointAcc.setRandom();
}
Eigen::Matrix<double,6,1> baseAcc;
Eigen::VectorXd jointAcc;
// See https://eigen.tuxfamily.org/dox/group__TopicStructHavingEigenMembers.html
EIGEN_MAKE_ALIGNED_OPERATOR_NEW
};
/*****************************************************************/
int main(int argc, char *argv[])
{
if( argc != 2 )
{
std::cerr << "KinDynComputationsWithEigen usage: KinDynComputationsWithEigen ./path/to/modelName.urdf" << std::endl;
return EXIT_FAILURE;
}
std::string modelFile = argv[1];
// Helper class to load the model from an external format
iDynTree::ModelLoader mdlLoader;
bool ok = mdlLoader.loadModelFromFile(modelFile);
if( !ok )
{
std::cerr << "KinDynComputationsWithEigen: impossible to load model from " << modelFile << std::endl;
return EXIT_FAILURE;
}
// Create a KinDynComputations class from the model
iDynTree::KinDynComputations kinDynComp;
ok = kinDynComp.loadRobotModel(mdlLoader.model());
if( !ok )
{
std::cerr << "KinDynComputationsWithEigen: impossible to load the following model in a KinDynComputations class:" << std::endl
<< mdlLoader.model().toString() << std::endl;
return EXIT_FAILURE;
}
const iDynTree::Model & model = kinDynComp.model();
// Now we create the robot state in Eigen datastructures
EigenRobotState eigRobotState;
eigRobotState.resize(model.getNrOfDOFs());
eigRobotState.random();
// Now we create the KinDynComputations class, so we can set the state
kinDynComp.setRobotState(iDynTree::make_matrix_view(eigRobotState.world_H_base),
iDynTree::make_span(eigRobotState.jointPos),
iDynTree::make_span(eigRobotState.baseVel),
iDynTree::make_span(eigRobotState.jointVel),
iDynTree::make_span(eigRobotState.gravity));
// Once we called the setRobotState, we can call all the methods of KinDynComputations
// For methods returning fixed size vector/matrices, the conversion to eigen types is trivial
Eigen::Vector3d com = iDynTree::toEigen(kinDynComp.getCenterOfMassPosition());
// If you are interested in a frame with a given name, you can obtain its associated index with
// the appropriate method
std::string arbitraryFrameName = model.getFrameName(model.getNrOfFrames()/2);
iDynTree::FrameIndex arbitraryFrameIndex = model.getFrameIndex(arbitraryFrameName);
Eigen::Matrix4d world_H_arbitraryFrame = iDynTree::toEigen(kinDynComp.getWorldTransform(arbitraryFrameIndex).asHomogeneousTransform());
// You can also get quantities directly with their name, but clearly this is less efficient
std::string anotherArbitraryFrameName = model.getFrameName(model.getNrOfFrames()/3);
Eigen::Matrix4d arbitraryFrame_H_anotherArbitraryFrame = iDynTree::toEigen(kinDynComp.getRelativeTransform(arbitraryFrameName,anotherArbitraryFrameName).asHomogeneousTransform());
// More complex quantities (such as jacobians and matrices) need to be handled in a different way for efficency reasons
Eigen::MatrixXd eigMassMatrix(6+model.getNrOfDOFs(), 6+model.getNrOfDOFs());
ok = kinDynComp.getFreeFloatingMassMatrix(iDynTree::make_matrix_view(eigMassMatrix));
if (!ok)
{
std::cerr << "Matrix of wrong size passed to KinDynComputations::getFreeFloatingMassMatrix" << std::endl;
return EXIT_FAILURE;
}
Eigen::MatrixXd eigJacobian(6, 6+model.getNrOfDOFs());
ok = kinDynComp.getFrameFreeFloatingJacobian(arbitraryFrameIndex, iDynTree::make_matrix_view(eigJacobian));
if (!ok)
{
std::cerr << "Wrong frame index or wrong size passed to KinDynComputations::getFrameFreeFloatingJacobian" << std::endl;
return EXIT_FAILURE;
}
Eigen::MatrixXd eigCOMJacobian(3, 6+model.getNrOfDOFs());
ok = kinDynComp.getCenterOfMassJacobian(iDynTree::make_matrix_view(eigCOMJacobian));
if (!ok)
{
std::cerr << "Matrix of wrong size passed to KinDynComputations::getCenterOfMassJacobian" << std::endl;
return EXIT_FAILURE;
}
std::cerr << "COM Jacobian: " << std::endl;
std::cerr << eigCOMJacobian << std::endl;
// For inverse dynamics, we need to pass the acceleration, of the robot
// as it is not part of the "state"
EigenRobotAcceleration eigRobotAcc;
eigRobotAcc.resize(model.getNrOfDOFs());
eigRobotAcc.random();
// In input to the inverse dynamics we also have external forces (that we assume set to zero)
iDynTree::LinkNetExternalWrenches extForces(model);
extForces.zero();
// The output is a set of generalized torques (joint torques + base wrenches)
iDynTree::FreeFloatingGeneralizedTorques invDynTrqs(model);
kinDynComp.inverseDynamics(iDynTree::make_span(eigRobotAcc.baseAcc),
iDynTree::make_span(eigRobotAcc.jointAcc),
extForces,
invDynTrqs);
// The output of inv dynamics can be converted easily to eigen vectors
Eigen::Matrix<double,6,1> baseWrench = iDynTree::toEigen(invDynTrqs.baseWrench());
Eigen::VectorXd jntTorques = iDynTree::toEigen(invDynTrqs.jointTorques());
std::cerr << "Inverse dynamics torques: " << std::endl;
std::cerr << jntTorques << std::endl;
return EXIT_SUCCESS;
}