MapWindow

Developer’s Corner

€ MapWindow 6.0

File Edit View Selection GISTools Hel Extensions
DERasOwBEe s

Legend | Toolbox |

Gt
= ¥ wo
.
& [|iationg 4
-
& @ ima
| —(

Harold (Ted) Dunsford Jr.
Mark Van Orden
Jifi Kadlec

October 2009

o

f ldaho State University

. \Geospatial Software Lab

1 of 85

Table of Contents

Table of Contents 2
1. Developer’s Corner 3
1.1. Geometry Cheat Sheet 4
1.1.1. Overlay Operations: 8
1.2. Exercise 1: Assemble a Map Project 10
1.2.1. Step 1: Start a New C# Application 10
1.2.2. Step 2: Add MapWindow Components 11
1.2.3. Step 3: Add Menu and Status Strips 13
1.2.4. Step 4: Add the Map 15
1.2.5. Step 5: Add the Legend and Toolbox 16
1.2.6. Step 6: Link It All Together 18
1.3. Exercise 2: Simplify Australia Data Layers 21
1.3.1. Step 1: Download Data 21
1.3.2. Step 2: Calculate Polygon Areas 21
1.3.3. Step 3: Compute Centroids 23
1.3.4. Step 4: Sub-sample by Attributes 24
1.3.5. Step 5: Export Layer to a File 25
1.3.6. Step 6: Repeat with Roads Layer 25
1.3.7. Step 7: Select Political Bounds by Clicking 26
1.3.8. Step 8: Apply Labeling 27
1.4. Programmatic Point Symbology 29
1.4.1. Add a Point Layer 29
1.4.2. Simple Symbols 32
1.4.3. Character Symbols 33
1.4.4. Image Symbols 37
1.4.5. Point Categories 40
1.4.6. Compound Symbols 44
1.5. Programmatic Line Symbology 46
1.5.1. Adding Line Layers 46
1.5.2. Outlined Symbols 47
1.5.3. Unique Values 48
1.5.4. Custom Categories 49
1.5.5. Compound Lines 50
1.5.6. Line Decorations 53
1.6. Programmatic Polygon Symbology 54
1.6.1. Add Polygon Layers 54
1.6.2. Simple Patterns 55
1.6.3. Gradients 56
1.6.4. Individual Gradients 57
1.6.5. Multi-Colored Gradients 58
1.6.6. Custom Polygon Categories 60
1.6.7. Compound Patterns 61
1.7. Programmatic Labels 62
1.7.1. Field Name Expressions 63

2 of 85

1.7.2. Multi-Line Labels 64

1.7.3. Translucent Labels 65
1.8. Programmatic Raster Symbology 66
1.8.1. Download Data 67
1.8.2. Add a Raster Layer 69
1.8.3. Control Category Range 73
1.8.4. Shaded Relief 74
1.8.5. Predefined Schemes 75
1.8.6. Edit Raster Values 76
1.8.7. Quantile Breaks 78
1.9. MapWindow 4 Conversion Tips 80
1.9.1. Point 80
1.9.2. Extents 80
1.9.3. Shape 81
1.9.4. Shapefile 82
1.9.5. Grid 83
1.9.6. GridHeader 84
1.9.7. Image 84
1.10. Extension Methods 85

1. Developer’s Corner

This section gives a bit of an overview of geometric relationships, which are important for
understanding some of the vector analysis options, and then gives some workable exercises to
demonstrate the current capabilities of MapWindow 6.0. This should be thought of as a kind of
developer’s preview, and not necessarily a comprehensive developer’s guide, which will be
made available before the MapWindow conference in Orlando in 2010. This part of the
document covers using MapWindow components, stitching together a working GIS by dragging
the important components from the toolbox in visual studio, and then gives a detailed
description of how to programmatically add layers and work with symbology or complex
symbolic schemes.

A huge focus for the .Net version of MapWindow is to put much more control into the hands of
developers. By providing everything in the form of .Net components, it makes it far simpler to
pick and choose what sections of the framework you want to work with. If the map is all you
need, you don’t need to bother adding the legend or our custom status strip or the toolstrip.
However, those components are provided for you so that it you can stitch together a working
GIS without writing a single line of code.

3 of 85

1.1. Geometry Cheat Sheet

In addition to organizing coordinates for drawing, the geometry classes provide a basic
framework for testing topological relationships. These are spatial relationships that are
principally concerned with testing how to shapes come together, for instance whether two
shapes intersect, overlap, or simply touch. These relationships will not change even if the space
is subjected to continuous deformations. Examples include stretching or warping, but not
tearing or gluing.

The tests to compare two separate features look at the interior, boundary, and exterior of both
features that are being compared. The various combinations form a matrix illustrated in the
figure below. It should be apparent that not only are the intersections possible, but each region
will have a different dimensionality. A point is represented as a 0 dimensional object, a line by 1
dimension and an area by 2. If the test is not specific to what dimension, it can represent any
dimension as “True”. Likewise, if it is required that the set is empty, then “False” is used.

T o =

Interior]

I

Boundary

Exterior

Figure 1: Intersection Matrix

Graphically, we are illustrating the intersection matrix for two polygons. Some tests can
be represented by a single such matrix, or a single test. Others require a combination of several
tests in order to fully evaluate the relationship. When the matrix is represented in string form,
the values are simply listed in sequence as you would read the values from the top left row,
through the top row and then repeating for the middle and bottom rows. The following are all

possible values in the matrix:
e T:Value must be “true” — non empty — but supports any dimensions >=0
e F:Value must be “false” — empty — dimensions < 0

e *:Don’t care what the value is

4 of 85

e 0: Exactly zero dimensions
e 1:Exactly 1 dimension
e 2:Exactly 2 dimensions

The following is a visual representation of the test or tests required in each case. A red X
indicates that the test in those boundaries must be false. A colored value requires that the test

be true, but doesn’t specify a dimension. A gray value indicates that the test doesn’t care about
the value of that cell.

e Contains:

0 Every point of the other geometry is a point of this geometry, and the
interiors of the two geometries have at least one point in common.

| - r
B
o ENa’ELH
e Covered By:
0 Every point of this geometry is a point of the other geometry.
| = By | mEgr| | - r

o] oo[N
B B B >< B >< En BB
E

|

B
0 = | E'E‘ E’E‘ E'orE-. E
e Covers:

0 Every point of the other geometry is a point of this geometry.

1 s cfl B EfNN | B EJ
| ‘m r I | 5 E=5 =

B g B = B W=
o EDMDEOL[M EDea%Eg[M , E %4 Ee [

5 of 85

e Crosses:

0 Geometries have some but not all interior points in common.

O T*T***** (for Point/Line, Point/Area, Line/Area)

e Disjoint:
0 The two geometries have no point in common.

O FFXFF***x
| B E
dxq D P
M

!

iy

I
B
E

(0]

o Intersects: NOT Disjoint

0 The two geometries have at least one point in common.

6 of 85

e Overlaps:

0 The geometries have some but not all points in common, they have the
same dimension, and the intersection of the interiors of the two
geometries has the same dimension as the geometries themselves.

O T*T***T** (for Point/Point or Area/Area)

o ENml J[1

0 1*¥T***T** (for Line/Line)

B LT

|
B
o E

e Touches:

0 The two geometries have at least one point in common but their
interiors do not intersect.

0 FT*******,F**T*****,OFF***T****

1 s E 1 B N | B E
= | | - [P | g I

B 'd] B O

E al JL" o B LT

e Within:

0 Every point of this geometry is a point of the other geometry and the
interiors of the two geometries have at least one point in common.

lo) T*F**F***

m o —

7 of 85

1.1.1. Overlay Operations:

Being able to test the existing relationships between geometries is extremely useful for doing
analysis, but many times you need to alter the geometries themselves. Frequently you want to
use other geometries to accomplish this. Consider the case of a clipping operation. In the figure
below, the rivers extend beyond the boundaries of the state of Texas. Using an overlay
operation is exactly the kind of operation that helps with this kind of calculation. These are not
limited to specific scenarios like polygon to polygon. Instead the same terminology applies to all
the geometries using the following definitions.

Figure 2: Before and After Clipping Rivers to Texas

e Difference:

0 Computes a Geometry representing the points making up this geometry
that do not make up the other geometry.

N

8 of 85

e Intersection:

0 Computes a geometry representing the points shared by this geometry
and the other geometry.

e

e Symetric Difference:

0 Computes a geometry representing the points in this geometry that are
not present in the other geometry, and the points in the other geometry
that are not in this geometry.

O

e Union:

0 Computes a geometry representing all the points in this geometry and
the other geometry.

-

9 of 85

1.2, Exercise 1: Assemble a Map Project

Putting together a GIS project has never been easier. Even a novice developer can take
advantage of our ready-built mapping controls, dragging and dropping them onto a solution.
Because the components are largely independent, they can be re-arranged in different layouts,
or used separately. Furthermore, the extensive use of interfaces for the controls allows a
control like the map control to be used interchangeably with alternate controls that act like a
legend.

In this first exercise, we will take the assembly step by step. If you have never worked with
anything besides the built in .Net controls, this exercise will be useful because it will
demonstrate how to add the MapWindow components to your visual studio developer toolbox.
It will also show the basic way that the most fundamental map controls can be added to the

map.

1.2.1. Step 1: Start a New C# Application

The first step of the exercise is to create a brand new application. Rather than working with an
existing application, the goal here is to show that getting from a blank project to a fully
operational GIS takes only a few minutes in order to add the components and link them
together. In addition, no programming code is required. To get to new project dialog in visual
studio, simply navigate to File, New, and choose Project from the context menu. This will
display the New Project dialog displayed in figure 1.

I [ok || cunce

Figure 3: New Project Dialog

10 of 85

Change the name and path to something appropriate. In this case, we chose “Build_A_Map”
and C:\dev\DotSpatialDev\Tutorial\Components\Ex1. Make sure that the Project type is Visual
C# and Windows. Ensure that the Template is set to Windows Forms Application. Then click OK.

1.2.2. Step 2: Add MapWindow Components

The first step in any project is to ensure that you have loaded all of the designer controls and
components into the MapWindow toolbar. As this tutorial was created in the alpha stage of
development you will notice that not all of the controls have unique representative icons or
other helpful instructions. There is also a large assortment of extra controls that were used for
designing MapWindow 6.0 that we may choose to remove from the toolbox for the public
release. However the basic technique will remain the same. First, we want to create a new tab
to store the MapWindow tools. You can do this by right clicking on the toolbox and selecting
the Add Tab option from the context menu.

£ Build_A Map - Microsoft Visusl Studic (Adeninistrato)

File Edt View Project Buld Debsy Data Tock Test VisuslSVN ReShwper Winc

b Debug - O 5 3 iEIE 3

| T g il & -

Toolbox 3 % Forml.cs [Design] | Star Page

All Windonws Form:

Cammon Controks i ——

T Contalners = Form = &

Right Click

Reset Toolbox

Add Tab

Figure 4: Add MapWindow Tab

This will allow you to edit the name of the tab. We chose to name the tab “MapWindow” so
that we could easily keep the controls from the MapWindow library together. Once you have
added a MapWindow tab, you will want to right click in the blank space below that tab and
select “Choose Items” from the context menu.

11 of 85

%) Build_A_Map - Microsoft Visual Studio (Administrator)

File Edit View Project Build Debug Data Tools Test VisualSVN ReSharper Window |
b Debug - O & 3

LN EREE W !
Toolbox

All Windows Forms
et o Form =EE
Menus & Toolbars
Data
——— Right Click
Printing

Dialogs /

WPF Interoperability n
Reporting

Visual Basic Powerl
|5 MapWindow, |

T3 5 4+ 24 ay &
| P53 [oge 3 oo | 3 4% &% et | (5] % 24

Form1.cs [Design] | Start Page | - %

There ar
this group.

textto List View

Show All
General =l

Choose ltems...

Ih| Paste

Sort Items Alphabetically
Reset Toolbox

Figure 5: Choose Items

The choose items option launches a new dialog which will allow you to select from various pre-
loaded .Net controls as well as some COM controls. However, we are going to use a third
option, and browse for the DotSpatial.Desktop.dll file.

M
Choose Toolbox ltems M
-NET Framework Components | COM Compenents | Silverlight Components I WPF Compenents I Actiwt\es|

Narne Namespace Assembly Nare Directory ol

AccessDataSource System.Web.ULWebControls Systemn.Web (2.0.0.0) Global Asse... [

[] ActionsPane Microsoft.Office. Tools Microsoft.Office.Tool... Global Asse...

[] ActionsPane Microsoft.Office. Tools Microsoft.Office.Tool... Global Asse...

[T] Activity System.Workflow.Compone... System.Workflow.Co... Global Asse...

[C] ADODC Microsoft.VisualBasic.Compa... Microsoft.VisualBasic.... Global Asse...

[ADODCArray Microsoft.VisualBasic.Compa.. Micresoft.VisualBasic.... Global Asse...

7] AdemdCemmand Microsoft. AnalvsisServices. A, Microsoft.AnalysisSer.. Global Asse..

7] AdemdCennectio soft.AnalysisSer.. Global Asse..

[] AdomdDataAdapt Cl 1 k B oft.AnalysisSer... Global Asse...

AdRotator IC rowse M\e (. Global Asse... il

Filter: Clea
AccessDataSource

.;? Language: Invariant Language (Invariant Country)
L

Version: 2000

[oK][T][Reset]

Figure 6: Browse

This, in turn, launches a file browser, and you will have to navigate to wherever the
DotSpatial.Desktop.dll file is found on your local machine. On this machine it was in the
C:\Dev_IN\dotspatial\Release folder.

12 of 85

% Open

@uv| .« MapWindowbDev » bin »

M Search

<[4

‘ Organize ~ g2 Views ~ [Mew Folder

Favorite Links Name’ Date modified Type Size 3
Projects . Plugins
3 . TestResults
[Dropbox
X . Tools
Spring 2009 - Sh.-. | i
il Recent Places %) MapWindow: I
BN Deskiop [MapWindow3DTest.
/% Computer [MapWindow3DTest vshost.exe
B Ted [MapWindows.e
[Recently Changed = MapWindowb.. Se | e Ct
B Pictures () MWUnitTests.d
B Sexches MapWindow.dll
More »
Folders ~
File name: MapWindow dl ~ | Executables ("dl; ".exe) ~

Figure 7: Select DotSpatial.dll

Once you have chosen this document, it will
cause a large number of tools to be added

"ﬁg Build_A_Map - Microsoft Visual Studio (Administrator) -
File Edit View Project Build Debug Data Tools ~
P Debug - o o = =2 =
Bz & S| T o | 58] 5 | e 3 00
Toolbox ~ 1 i e Forml.(s[[lesign]"t Sta
Visual Basic PowerPacks | *
= MapWindow
‘ a? . | 1 85 Forml
& Pointer

Q‘a LayoutMenuStrip
& DynamicVisibilityCo
Q‘a ModelerfenuStrip

Q‘a DialogElem
H s Control
Q‘a ApplicationManager

4G# HueSlider

Q‘a Modeler

Q‘a LayoutDocToolStrip

Q‘a DetailedPointSymbeolContr...
| SizeControl

@ OutlineControl

@ DoubleBox

Q‘a ColorButton

Q‘a mwToolStrip

Q‘a Legend

GradientControl

@ ColorBox

& Map

Sﬁ LayoutZoomToolStrip

Sﬁ LayoutInsertToolStrip

Sﬁ LayoutMapToolStrip

48 DetailedPolygonSymbolC... | =

New Tools
Appear

m

“3 Server Explorer| 43 Toolbox |

to your toolbox, as is illustrated in the figure

to the right. Figure 8: MapWindow Tools

1.2.3. Step 3: Add Menu and Status Strips

Adding a .Net MenuStrip is a fast way to give access to a very versatile number of tools, options,
or other capabilities. This is not in any way required by the MapWindow GIS components, but
rather is simply a convenient starting point for a new application. The MenuStrip is found under
the All Windows Forms tab in the toolbox. Simply drag the MenuStrip listed there onto the
main form.

13 of 85

ﬁg Build_A_Map - Microsoft Visual Studio (Administrator)
-

Label

A LinkLabel
ListBox
ListView
MaskedTextBox

File Edit View Project Build Debug Data Tools Test VisualSVM ReSharper Window Help

r=t

b Debug - &l & e = -
NN N R Y E | R = g e I || T | S| 2
Toolbox = & X| Formlcs [Design]*| Start Page |
\T] FolderBrowserDialog i
L4 FontDialog Developer Exercise 1
[™"] GroupBox File
HelpProvider
@3 HScrollBar
(= Imagelist /

Drag a
MenuStrip
k4

|-_‘z MenuStrip

() MessageQueue
[Z] MonthCalendar
== Notifylcon

MNumericUpDown

Figure 9:Drag a MenuStrip

Next we will switch back to the MapWindow controls and add two controls that are directly

associated with the MapWindow components.

The first is the SpatialToolStrip, which lists

several basic GIS functions like adding data layers, switching between zoom and pan mode, and
zooming to the full extent. The second is the SpatialStatusStrip.

ﬁ Build_A Map - Microsoft Visual Studio (Administrator)

T O P e e

b Debug - & AR 3B
LI = R

Toolbox

-

~ X FormlLes [Designl"| Start Page

Fille Edit View Project Build Debug Data Tools Test VisualSVN ReSharper Window Help

28 |5 | E =T

488 Modeler -
488 LayoutDocToolStrip

4G DetailedPointSymbolContr...
& sizeControl

[OutlineControl

DoubleBox

4 ColorButton

[E —
| %8 Legend

[# GradientControl

[ColorBox

& Map

4 LayoutZoomToolStrip

4G LayoutinsertToolStrip r
4 LayoutMapToolStrip

468 DetailedPolygonSymbolC...
48 DetailedLineSymbolControl
488 TwoColorSlider

48 ToolManagerToolStrip

48 SymbolPreview

48 LegacyPluginManager

[# FontFamilyCentrol

4 GradientSlider

[# FontBox

48 DashControl

H ColorBreakViewer

48 GraduatedSymbolTabl =
48 ToolManager
% RampSlider
4G mwStatusStrip

Developer Exercise 1
File

[=rerfE=]

DEiBBEORA

@E>DO-

/

Drag a

e

Drag a

mwStatusStrip

N

mwToolStrip

Ready. J

4 LayoutListBox

Figure 10: Add Status and Tool Strips

14 of 85

1.2.4. Step 4: Add the Map

Now that the peripheral controls have been added, we can start adding the controls that will
work within the central part of the map project. In order to cleanly divide up the screen areas
with a minimum of custom programming, we will take advantage of a .Net SplitContainer
control. This will divide the content into two separate panels that are sizeable by the user.

168 BuildA Mop - Microsoft Voul Sidie Bdmmeeco - R
Fle Edit View Project Buld Debug Data Format Tools Test VisualsVN ReSharper Window Help

: b Debug - o5l B 3
| | b e e | 6 A at e | e 21D

Toolbox ~ax
o paner

124 PerformanceCounter
[PictureBox Developer Exercise 1 =8 =)|
2 PrintDialog File

L& PrintDocument | ER @l EMRKLOESD

Form1L.cs [Design]"| Start Page |

| PrintPreviewControl
[PrintPreviewDialog
i 3 Process

0 ProgressBar ! '
27 PropertyGrid

| @ redicsuton Drag a

25 RichTextBox

|| D soeiing SplitContainer

& SeralPort
A ServiceController E i \
[] SplitContainer Panell Pane2

«|» splitter

=

) splitContainer
k= Statusstip | Version 2.0.0.0 from Microsoft Corporation
[TabControl | -NET Component

I bl outPar e e R e e i
TextBox panels to which you can add controls.

& Timer 1
5 ToolStrip Hm ‘
TT TanlStrinC nntainar i

Figure 11: Add a SplitContainer Control

Y Bunlt & Mgy - Mecrisialt Wriasal Stk (Acmanistratio] el adiandhe . . alel] &]|

Fie Edt View Project Build Oebug Data Tooh Ted VowalVN BeSheper Window Help
b Debey - B8 % :

Lo s LS o il o w8 B G

!Tnnum : = 0% Formles Devignl*| St Page | - | Proparir -3
W ModelerMenuSirip e map] hiagWindow.Map.Map

& DislogBlement -
B SQUQuenCeetrel Developer Exercise 1 *u[a1] [m] #

G ApplicmtionManager s funeSisebode GreraCoby

B HoeShder DERESONR200 4D Autealidate EnablePreventFocuiChange
L Modeler ¥ BackColer] white

G LayoutDesToctnp Hackgreumdimage] tmened

4@ DetsiledPointSymbelContr_. Backgrowndimageliyost The

 SaeControl BorderStyle Hone

Causesvilidation True
| e CotectiadteDinm Fabse

« M

1263813 QLN g SMICHdNE LEANIS o

ColisionDetection False

Drag a Map

GradientControl
Colofax o \‘
@ Mp

EatrradBuller

@ @ Fomt
a FoseColor :, [
B Laye " GenerateMemier i |
G DetailedPolygontymsC... Inelleds [None |
4@ DetailedlinetymisiContrel 1 nanel
@ TusCootier : Set Dock ~ o
@ TeclManagerTectitrp 1 LU
.. = to Fl ” .
s v numsize 0,0
H Mirurrmaee (]

Figure 12: Add a Map

15 of 85

Once the separate panels exist, we can add the map to the project. When adding the map, it
will likely be the wrong size for the panel that we created. In order to allow the user to resize
the map so that it always is the right size for the panel, change the “Dock” property to “Fill”.
This can be done by choosing the central rectangle in the drop down editor that appears in the
property grid when you click on the down arrow.

1.2.5. Step 5: Add the Legend and Toolbox

Because the Legend and Toolbox can both exist in support of the map, and it is not critical to
have both of these tools visible at the same time, for this project we will take advantage of the
.Net Tab control to help re-use the same space more effectively. Because these components are
interchangeable, the Tab control is not necessary, and second split panel, fixed panels, or even
third party docking panels are all acceptable alternatives that will not affect the proper behavior
of the map, legend or toolbox.

) Build_A_Map - Microsoft Visusl Studio (Administrator) 0 0

File Edit View Project Buld Debug Date Tools Test VisualSVN ReSharper Window
b Debug -

SN =R N U e]

Toolbox > x

=

HER 51 &% ar
Form1.cs [Design]*| Start Page

1% NumericUpDown
[£] OpenfFileDialog
| PageSetupDialeg

Developer Exercise 1
File

73 Panel - o)
3 =Y # B

] PerformanceCounter BipasDx,00drm

|l PictureBox Legend | Taolbax i

(2 PrintDialog

L2 PrintDocument
L%, PrintPreviewControl

(5] PrintPreviewDialog
T4 Process

@0 ProgressBar

7 PropertyGrid

& RadioButton

25 RichTextBox

#7] SaveFileDialag

& SerialPort £
4 ServiceController

[0 splitContainer

|+ Splitter

| StatusStrip Drag d Ta b
""" Control

Version 20,00 from i
{5 Timer \NET Component Ready.
55 ToolStrip

- | Manages and displays to the user a related collection
) TaokStrinCo/Jmte i € e S ———

e, ToolTip

Figure 13: Add a Tab Control

In this instance we added the tab control to the left panel, and changed the text on the two tabs
to read Legend and Toolbox. This can be done through the property grid that appears when you
activate the tab control by clicking on it after it has been added to the main form.

16 of 85

R e e
File Edit View Project Buld Debug Dats Took Test VialSVN ReSharper Window Help |

b Debug B R EE
oo 5l it 385 00 A i|=te
Toslbas VNI . Formlcs - Fropedi TR
e i - [Designl”| Start Page 3
S legend] Magilindow Companents.Legend
1 Wil Basic PowesPacks Oeveloper tnercae 1 & 51 (@] #
Fie Allowiiep Fale g
® LSO N 200 4D Anchor Top, Lelt %
- . BackColor] white 54
— Backgroundlmage] tnoney i
o Eachgroundimagelayent Tie =
@ DuicgElement ConrsesWabedatice True -
5QLQuenConsral ContextbMunustip {none) g
& ApplicicnMirage: ContralRectingle 00,165,355]
G Hussder Cursor Defautt
@ Hesee . T — z
| & LayoutDocToalStrip B Docurmsen \Firctamgle
@ DetsiledPointSymibolCant... Enatiled
i & Font
43 onl Colar
) ratehermby
o o Set Dock i e
© maTeasiip . g FaCan i
. Drag a to F]II tatian W
L ——
@ GradientContred Le e nd i e
H Colora g E e
& Mip i ; Fie
@ LyoutZoomTectitip B ! = m 1133
@ Layoutineen ToolStip Rendy: S M aeiive P

& LevoutMenToolStin i

Figure 14 : Add Legend

Adding the legend follows similar rules to adding the map. You can simply drag this on top of
the tab control when the “Legend” tab is selected. This will automatically tell the designer that
the legend control will only appear when the Legend tab is selected. Like the map, the legend
should have its dock property set to fill in order to take advantage of the splitter control’s ability
to resize the layout.

ke T ——————————
Fle Edt View Preject Buld Debug Data Toels Tet VowaBVN ReShaper Window Help

B Dubug DI R IEIE
L 8 3| 0 | o b O b | | =T
Toobon = T% - fommLes Desigal"| St Page] =% [TR
8 Doublelox . Tools. e
Coloruty s
g o Developes aercise 1 <A TR :
e Toolstip . o, :
File Drop Falue =
nd ; Activate - Top Leh F:
F GeadientControl BESETORe r Hw ;
- o i
Teokex
: G s <+ Toolbox e FasdiD
Mep
sValidation Troe
L 32
P LopoElomm Tl Ta b dces Falze -
B LeyoullnsentTootitng. anbesthbenultrip (reare] K
@ LsyouthapToalstap Cursse 3

4 DetniledPatygentymbeil. A
G DetsiledUinaSymbolCantrol
& TwoCelorSider

G ToMnage Teetseip

& Symbolrevies SEt DOCk

Bl LegacyPhragnManager

d FontFamilyContral -
8 o /‘ to Fill =
i Trae
& o ol HotTracking Falue

Irugelnder [(nens)
4G GradustedtymbalT sble Drag a Imagekey] el
& Toohdanager Imagelist [

2 i * ToolManager it o
& rovwSaten St Incient T
e | =

Figure 15: Add a Toolbox

Although we are not going to enable the toolbox in this exercise, it would be a good idea to add
one. This will enable us to directly use our current project as the starting point for the next
exercise. To add the toolbox, simply switch the tab control to the “Toolbox” tab. Then, drag
and drop the ToolManager. Like the legend and the map, you will want to set the dock to full.
Once you have done this, select back to the Legend tab so that when the application starts it
defaults to showing the legend, rather than the toolbox.

17 of 85

1.2.6. Step 6: Link It All Together

We could technically run the project right
away, but it would not appear to do

anything. The add data button, for instance
might happily open a file dialog, but nothing
would happen when it was finished. In

e T e

__5
!
;

Set Legend

I[I;T

|
[
order for the status strip to show updates
from the map, and in order for the legend .
|

to show the layers from the map, we need f -
. . i Set Progress s
to link things together. The map has a | Handler qpaia
property for the Legend and ! .
ProgressHandler. Set these to legendl and | b B @ e A
[

mwStatusStrip1 respectively.

Figure 16: Link Map

W2 Duild_A_Map - Microscét Visual Studia (Admei
Eile Edt Yoew Pregect Build Debug Dgta Jook Tegt VoualiVN BeShaper Window Help
F Debug SRR EEE S,
AL & |7 ek |G EE B W de | E B A& sl =ie
(8| FormLes (Designi” | Shart Page| - x |Fapee Ll
= ipl MapWindew.C k P 4
H - -
g Devtoper bamrerie 1 =@ &0 [21] (] # 3
= || |, fe - Anchor Top, Left =
2 ERT T LAY I FY T Autasize I‘:'lt 3
L ; 4 e Cantrol =
- logend |Toskew 5 N — 1 inoner E
z 1 6 ag Frame -1 ACt|Vate wndmagelayont Tie =
] f H el Teus =
5 5 mwToolStrip e o s
Tep 3
o] Teue
B Font Segoe UL 9pt
GenerateMernber Teue
B GropMargn a222
Grplityle Waible
B Imagetcalmgbize 16,16
IneMsde MeoCentrol
Rema CoRection)
LayoutStyle HorzontalBeckWithOverfiow
B Location o
™
Ready.
FaghToleft Mo |
ShewdtemTeslTigs True
B Size 3.5
- Fuize
Tabindex 2
TabStop Faise
Tag
Tet mwTositripl
TestDirection Horizoral
Uit Cursar Fals
= Witible ! =
& memnttrgl il eStatustinp] Gl Tocktrpl [

Figure 17: Link Tool Strip

18 of 85

The next step is to link the tool strip to the map. This can be done by simply activating the
mwToolStrip, choosing the Map property and selecting mapl. In order for the application to
understand what to do with the data, a system reference to the DotSpatial.Data.dll must be
made. This .dll is located in the same file as the DotSpatial.Desktop.dll that was reference to
access the GIS controls. Now that the project is connected together, we can start our project
and run it on some test data.

The first thing to do is to get some data. For our sample, almost any data in shapefile format
will do, but in the spirit of improving online data awareness, this book features many online data
sources that should provide up-to-date GIS data.

? Help Tip
Sometimes links can become broken or out of date.
In cases like this, it is often useful to look at the first
part of the address and then search for data
manually. Example: instead of

http://www.census.gov/geo/cob/bdy/co/co00shp/c

099 _d00_shp.zip,

you could use
http://www.census.gov

The raw data in this case is stored in the form of a zip file. Most modern operating systems can
unzip files automatically, but in the event that you need an unzip utility, a free, open source
utility called 7-zip is available for download from http://www.7-zip.org. Once you have
downloaded and extracted the shapefiles, you will see a .shp, a .shx and a .dbf file all with the
same name before the extension. This is the basic file format known as an ESRI shapefile, and is
a commonly used format for GIS analysis because it is portable and has an open standard and so
is widely compatible between different GIS software vendors.

19 of 85

Developer Exercise 1 E@I&J

File

Legend | Toolbaox

= £F Map Frame
B [¥]|co99_d00

=

Ready. | |

Figure 18: Census Data

The figure above illustrates the view of the continental United States. Because the data also
includes counties in Hawaii, Alaska and Puerto Rico, it will be necessary to zoom a little to zee a
view like the one above. The map starts automatically in the “Pan” mode. In this mode, you can
click on the map with your left mouse button and drag the map in a direction to have it update
the view. You can also use the mouse wheel to zoom in or out of the scene. The basic
operation follows the operation of the Users section for MapWindow 6.0, and so you can get a
much more detailed picture of what is possible with your map.

20 of 85

1.3. Exercise 2: Simplify Australia Data Layers

1.3.1. Step 1: Download Data

For this exercise, we need some thematic vector layers that represent more than just polygons.
In honor of the Sydney Free and Open Source Software for Geospatial (FOSS4G) 2009
Conference, for which this document is being written, | am downloading some basic Australian
datasets. Sometimes basic GIS data is offered on sites for free in the hopes of promoting the
data with greater detail.

http://www.usgsquads.com/prod digital international vector maps.htm

For this exercise, we downloaded the AUS Cities, AUS Lakes, AUS Political, AUS Populated Areas,
and AUS Major Transportation shapefiles. These files are stored in zip format, so you will have
to unzip them first (see exercise 1). | found that the cities shapefile in this example was
misleading because it does not contain any of the major populated city areas. Instead, before
we do any programmatic symbolizing, we can get better points that are a better representation
of the cities from the polygons that are “populated areas”. To do this, you can use the
MapWindow 6.0 application to convert the populated areas polygons into cities.

1.3.2. Step 2: Calculate Polygon Areas

43 MapWindow 6.0

File Edit View Selection GISTools Help Extensions
RAFEORLOE 4+ D

lTooIbox] \

B £ Map Frame |Add Data \ CliCk TO Add

Data

Figure 19: Add Data

After clicking the green plus to open a file dialog, browse for the
“australia_populated_areas.shp” shapefile you just downloaded and extracted. When it opens,
you should see the polygons that represent large city areas, mostly at the outer limits of
Australia. Since the polygons are small compared to the size of the entire continent, we can see
that the city regions are in fact polygons by zooming into the Sydney area.

21 0f 85

44 MapWindaw 6.0 " . =S X"
File Edit View Selection GISTools Help Extensions
DB+ ORLPO0E D
Legend]Too\box]
= £F Map Frame -
= australia_populated_areas
I @
- j
& et
-] a
Ready. X: 1507098560, V: -33.6448454

Figure 20: Sydney Polygon

We will eventually like to be able to distinguish the largest cities. Because the downloaded
polygons don’t contain any information about the population or area, we will use the area
calculation tool to calculate areas for each of the polygons. The units of the area will be largely
meaningless because the linear units are in decimal degrees, but the values will be useful for

separating the larger cities from the small ones. To see the toolbox, simply change the tab to
the Toolbox tab.

i+ Magindow 6.0 (=l e
File [dit View Selection GBSTook Help Ditensions

aSPOR2PO0O 4D

.w_.1m| /[

97 Commn Double Click e / D | .
-7 wm“‘w T ToActivate b - H € p Ti p
S 7 Cameaemen ’ S ‘7«&., Since this exercise was constructed using a pre-

4 - : - release version, later versions might not have the
) same layout. Viewing the toolbox might be an

' option made available through the View menu, so if
G}' the toolbox tab is not obvious, check the view menu
W’“E\ .] for an option for adding the toolbox tab.

: /

Ready. : 1481443307, ¥: 321906640 K J

Figure 21: Calculate Areas

S Find Tool

The resulting shapefile has to be re-added to the map. In this case, a new field has been added
to the resulting shapefile that shows the area. While this is not as useful as population for
selecting large cities, it at least should give us another tool to work with.

22 of 85

i} Antribute Table Editor =& =]
Edt View Selection Tools

lg+nasE

001426 Stcind New Area

& el : shy o
NAME LAYER FACC_Featu | araa = Att rl b utes

r T cuit-Up Avea | ALDZO 0.0001009997 79533595
HERNE HILL | Built-Up Area | ALOZO0 0.000102002515632194] l
PAYNESVIL ., J e e e —
COBDEN 4% MapWindow 6.0 - - -_. =
JAM, | Fide Edt View Selecton GIS Tools Help Extersions
poRTSEA || E LEPUX200D
ROSECALE || Looend | Tooes |

EF Map Frame

CANN RIVER | | o citywitharen
SARING, (
weDGerE_ || =] weatralia_peliticel_bndr
BONNIE VA || (]
SOUTH HE |
WAGIN |
Tonc |

UpdaiaTable Tog s ’
— . . ?

Ready. X 1481604891, ¥: -33.5661726

Figure 22: Newly Added Areas

1.3.3. Step 3: Compute Centroids

Now that we have a way to at least order the cities by way of areas, we can now create
a simple cities layer from the existing polygons. We can do this by using the centroid tool.

44 MapWindow 6.0 (= E s |
File Edit View Selection | GISTools | Help Extensions
BrEagedO®roE @

Legend Toobox |
/" Raster Overlay

e Double Click
Bl Vector Qverlay / .
+1 ToActivate

F oo i
/" Delete Featurss

#* Clip Polygon With Line

/* Add Feature

/" Clip FeatureSet With Polyg
/" OverWrite Festurs .-
=7 Statistics B o o
i * Calculates Areas q

- 7" Interpalation .

- 7* Generalization

-7 Temain Analysis

-7 Spatial Reference ™ ,
i Fe——— | J

S Find Tool 5

Ready. [X: 1466900268, V: -31.2716052

Figure 23: Calculate Centroid

The shapefile created by calculating the centroids will now be a good representation of the city
locations for built up areas, and in addition, it will give us an approximate measure of the size of
the built up area using the area attribute.

23 0f 85

+ MagWindow 6.0 s & . A2

— s %
| Fle Edit View Selection GlSTook Help Extensions |
LSt ORPOOLD
Lngerd | Taobax | [
= £F Map Frame
¥ citeswitharens

| nusamiin_polical_bndrys
=1 Ent_nam

Feady. G 151258964, Vi -108461204

Figure 24: Too Many Cities

1.3.4. Step 4: Sub-sample by Attributes

As can be seen from the figure above, there are a few too many cities visible to make a good
map. In order to build a cities shapefile with just the largest cities, we can add the newly
created cities shapefile to the map. We can then use the select by attributes ability, and in this
case choose [Area] > .01 as the criteria.

Select By Attributes =)

Layer [ctieswithareas =

Method: [Create 3 new selection |

Field Names ;
Unique Values

0004878662 2
0004972104

0005247678

0.005753863
0.

00946594
0010362121
0036049424
0.039210135
0045422034 @
0.101203964 L

0.127154883 ol
Minimum: 2.6684E-05
Maximum: 0.127154883

SELECT * FROM [Attributes] WHERE

[Area] > 01|
Apply M Ok
Figure 25: Area > .01

24 of 85

4 MapWirdow 6.0 T e i |
Fde Edl View Selecton G5 Tl Help Etensns
DEBpESORLPON LD

tngend | oo | - ;;? "
| z

sty

=Cnt View Attnbules
Latiel Setup
Selection » Zoom to Selected Fratures
Data » Create Layer from Selected Festures

Preperties
e -
. o

Ready. X 1126819473, ¥: -15.0041782

Figure 26: Create Layer

In order to create a new layer with the features we have selected, we can right click on the cities
layer in the legend. By highlighting the “Selection” tab in the context menu, we gain the ability
to create a layer from the selected features. This will create a new in-memory shapefile that is
not yet associated with a true data layer.

1.3.5. Step 5: Export Layer to a File

[4 MapWindow 6.0 ==

A0 0D

Ready. 113722575, Vi -20. 5040663

Figure 27: Export Layer

Exporting the layer will save this newly created city layer with just the cities with the largest
areas.

1.3.6. Step 6: Repeat with Roads Layer

Because the roads shapefile is actually quite large, we might want to limit that shapefile as well.

250f 85

4 MapWndow .0
Select By Ablribnstes

| Fie et veew

= ey |
Legend | Toobex |

=1 £F Map Frame

SELECT * FROM [Asributes] WHERE

’ﬁ_u«m-n,..,,.w

rosty | Cione | o |

¥ 1387925175, ¥: -33.3032470

Figure 28: Primary Roads

1.3.7. Step 7: Select Political Bounds by Clicking

44 MapWindow 6.0 [P=E]
ille E:.:l ::“ éelf«::nn .GIS Tﬁals- Actlv a te
el Selection 1 Ve
= [MajerCities If
?Br-ﬂoaﬂs é\ri.) \
- T Left Click
Sel Rt
elect -

. Layer ¥ ,

Figure 29: Select Major Areas

Selecting by attributes is not the only way to narrow down the features that you want to use.
First, make sure that the layer you want to interact with is selected in the legend. This will
prevent content from other layers from being selected at the same time. Next you can activate
the selection tool by using the button in the toolstrip indicated in the figure above. Holding
down the [Shift] key allows you to select multiple layers at one time. Once you have selected
the major polygons, create a new layer the same way by using the create layer from selection
option in the legend. Finally, export the data to create a simplified continental shapefile. This
will make labeling exercises easier because the result will not be cluttered by labeling the small
islands around Australia.

26 of 85

£ MapWindow 6.0 =)
File Edit View Selection GISTools Help Extensions

EEUREYEE - RVENVN N=I: |

Legend | Toolbox |]

1 £ Map Frame ”

2
. Remove Layer
[austry Zoomoleyer
D newso View Attributes
[NORTHE Label Setup
[queens Selection s
[[] soutH Data 3
[Tasman Properties
[vicToru
(] WESTERN AUSTRALIA
Ready. X: 1098600822, Y: 6.0865390

Figure 30: Activate Labeling

1.3.8. Step 8: Apply Labeling

o MapWindow 60 '3 Feature Labeler =[E] =3[=]}
File Edit View Categories Expression |Bas|c Properties | Advanced Propetties | Members |
[EERREY=E Field Names R
Legend | Toobax | . rae R .
= £3 Map Frame - .
& amond Double Click
[l nam
4 To Add Field
o R
adl
[sg 3] niose | Miimam: [AUSTRALBN G
g;‘ i _owa | or| wer | Vel |\ reEsTERAGS |
D | SELECT * FROM [Attributes] WHERE
[ram]
| x| | ¢
Each symbol group . B
e Click To W
A p p | y ﬂl ﬂl ﬂl X:105.2252640, Y: -6.9741173 J

Figure 31: Apply Labels

27 of 85

4% MapWindow 6.0

File Edit View Selection GISTeols Help
DEIRBPORLOE D

Legend | Toolbox |

Extensions

£ £F Map Frame
8
Elnam

[] AUSTRALIAN CAPITAL TERRITORY
[0 NEW SOUTH WALES
[_] NORTHERN TERRITORY
(] QUEENSLAND
[[] SOUTH AUSTRALIA
[TasMANIA
[C]vicToria
[] WESTERN AUSTRALLA

NORTHERN TERRITORY
QUEENS

sy WESTERN AUSTRA

AL TERRITORY

TAWIA

Ready.

X:127.8076758, ¥: -44.8415677

Figure 32: Applied Labels

28 of 85

1.4. Programmatic Point Symbology

Unlike the previous section, where we were assuming that the reader would perform each step,
in this section, we will explore the most basic features of the extremely powerful symbology
toolkit provided by DotSpatial, but listed under completely independent objectives. These are
subdivided into 5 basic categories: Points, Lines, Polygons, Labels, and Rasters. A
comprehensive set of cascading forms launched from the Legend provide a built in system so
that users can get started editing symbology right away using the built in components.
However, this section is not about mastering the buttons on the dialogs. Rather, this section
makes the assumption that you are either writing a plug-in, or else are building your own GIS
software using our components. In such a case, you might want to be able to automatically add
certain datasets, and control the symbology automatically, behind the scenes.

In previous versions of MapWindow, setting the color of the seventh point in the shapefile to
red was extremely simple, but the trade-off was that anything more complex was not inherently
supported in the base program. Instead, developers would have to write their own code to
make symbolize the layer based on attributes. MapWindow 6 introduces thematic symbol
classes that on the surface appear to be much more complicated. However, we will show that
accessors have been provided to still allow easy access to the simplest steps, but also provide a
basic structure that makes symbolizing by attributes much simpler than in previous versions.

To begin this exercise, we will need the datasets created as part of exercise 2. We will also be
working with a copy of the visual studio project that we created in exercise 1, to hammer in the
point that you do not need to be working with the MapWindow6 executable, but rather can be
working directly with the components in a new project. The first step is to explore adding data
to the map programmatically.

1.4.1. Add a Point Layer

Objective: Add A Point Layer To The Map

FeatureSet fs = new FeatureSet();
fs.Open(@"[YourFolder]\Ex3\Data\CitiesWithAreas.shp');

IMapFeaturelLayer myLayer = mapl.Layers.Add(fs);

The three lines of code above are all that is needed to programmtically add the cities with areas
shapefile to the map. The first line creates an external FeatureSet class. This is useful for
opening and working with shapefiles. The second line reads the content from the vector portion
of the shapefile into memory. The @ symbol tells C# that the line should be read literally, and
won’t use the \ character as an escape sequence. You can substitute [YourFolder] with the
folder containing these exercises on your computer. Finally, the last line adds the data to the
map, and returns a layer handle that can be used to control the symbology. | can add the lines

29 of 85

of code above in the main form by overriding the OnShown method. That way, when the form
is shown for the first time, it launches the map. The FeatureSet variable gives us access to all
the information stored directly in the shapefile, but organized into feature classes.

| IFeaturebet | IFeature
(FeatureSet) (Feature E3
Class Class
+ DataSet
- = Properties
P}r_n\:)pertles = BasicGeometry
’_‘T DataTable 5 DataRow
gj Envelope ’_‘*‘f‘ Envelope
jj Features B FeatureType
jj FeatureType = m
' Filename '_‘&I} GeometryType
= Methods ' NumGeometries
W AddFeature Br ParentFeatureSet
% CopyFeatures =l Methods
V¥ CopySubset (+ 1 overlead) & Copy
% CopyTableSchema (+ 1 overload) ¥ CopyAttributes
% FestureFromRow @ ExportToGML
‘# Find ¥ GetBasicGeometryN
% Open (+ 1 overload) & ToBinary
% Reproject
¥ Save
W Savels
% Select (+ 1 overload)
W SelectByAttribute
= Events
FeatureAdded
FeatureRemoved

Figure 33: Feature Set and Features

The simplified class diagrams from above give an idea of what kinds of information you can find
directly on the FeatureSet class, or in one of the individual Features. The DataTable property
returns a standard .Net System.Data.DataTable, filled with all of the attribute information. This
table is also used by the SelectByAttribute expression. The Envelope is the geographic bounding
box for the entire set of features. The Features property is the list of features themselves. This
is enumerable, so you can cycle through the list and inspect each of the members. The
FeatureType simply tells whether or not the FeatureSet contains points, lines or polygons.

The other significant vector data class shown here is the Feature. The BasicGeometry class lists
all of the vertices, organized according to OGC geometric structures, such as Points, LineStrings,
Polygons, and MultiGeometries of the various types. Because we were interested in making
extensible data providers, we did not require these basic geometric classes to support all the
mathematical overlay and relate operations that can be found in the various topology suites.
Instead, the role of the BasicGeometry is to provide the data only interface.

30 of 85

We did not overlook the possibility of wanting to perform, say, an intersect operation
with another feature. Instead of building the method directly into the feature class, we have
instead build extension methods so that from a programmatic viewpoint, it will look like any
IFeature will be able to perform Intersection calculations.

protected override wvoid OnShown (Eventirgs e)
{

FeatureSet f= = new FeatureSet():

fa.0pen (@"C:\dev\MapWindoweDev\TutorialComp

[
] an nobs L

18 f=.Features[0] |

1% % GetHashCode -
20 TTinmFeaturel -y GetType Layers.add (f:
211 Extension :.onsnown % Intersection
22 ";M (this IFeature self,
23 Method %, IsWithinDistance This tests the ¢
24ily =] MumGeometries :
a5 = NumPoints 3 (this IFeature self,
W, Overlaps = || (this IFeature self,
ﬁ ParentFeatureSet
f RecordMumber
¥, Relates -

Figure 34: Extension Method

Typing a period after a class in .Net will display an automatic list of options. Continuing to type
normally filters this list of options, so that you can very rapidly narrow the displayed items and
reduce the chance for spelling mistakes. It also gives you an instant browse window to explore
the options on a particular class. This auto-completion tool is referred to as Microsoft
Intellisense. The exact appearance of this function will depend on the version of visual studio,
as well as whether or not you have any extensions like Re-Sharper loaded. If XML comments
have been generated for the project, (which they have been for MapWindow 6.0) you will not
only see the methods, properties and events available, but you will also see help for each of
these methods that extends to the right.

Methods are identified by having a purple box. Extension methods are represented by a purple
box with a blue arrow to the right of that box. Instead of having the programming code built
into the class, the code is actually separate, in an external static method. Using this technology,
it becomes easy to associate a behavior like Intersects directly with the feature, but without
every external data provider having to rewrite the intersection code itself.

310f 85

1.4.2. Simple Symbols

8
Objective: J Make Yellow Stars 1

private void MakeYellowStars(lIMapFeatureLayer mylLayer)
{
myLayer.Symbolizer = new PointSymbolizer(Color.Yellow, PointShapes.Star, 16);

}
Because we know in advance that we are working with points, we don’t have to work directly

with the existing classes, or use casting. We can simply use the constructor. If we pass mylLayer
from the earlier code into the method above, we will automatically create the outpoint shown
in the following image.

Developer Exercise 1 oo e

File

{ Legend || Toolbax

1 £F |Map Layers
=] citieswithareas

Ready.

Figure 35: Yellow Star

One thing that you might notice is that the borders of the stars are hard to see because we only
specified one color, and that color was the fill color. In order to give the stars black outlines, we
need to call a slightly different method.

myLayer.Symbolizer = new PointSymbolizer(Color.Yellow, PointShapes.Star, 16);
myLayer.Symbolizer_SetOutline(Color.Black, 1);

32 of 85

Developer Exercise 1 (=
File

DrBariOxLP0E+D

= £# Map Layers
=] citieswithareas

« «

Ready.

Figure 36: Yellow Stars with Outlines

You will notice that the layer does not control these characteristics directly. Instead, it uses a
class called a Symbolizer. Symbolizers contain all of the descriptive characteristics necessary to
draw something. They have a few simple accessors that allow us to work with the simple
situations like the one listed above. In this situation, we are not worried about a scheme, or
complex symbols that have multiple layers. A method like SetOutline may or may not work as
expected in every case, since some types of symbols do not even support outlines. However, if
we inspect the parameters that we can control above, we already have the basic symbology
options that were provided in previous versions of MapWindow.

1.4.3. Character Symbols

Objective: Use Character Symbols

In addition to the basic symbols, MapWindow 6.0 also provides access to using characters as a
symbol. This is a very powerful system since character glyphs are vectors, and therefore
scalable. They look good even when printing to a large region at high resolution. It is also
incredibly versatile. Not only can you use pre-existing symbol fonts (like wingdings) that are on
your computer, there are open source fonts that provide GIS symbols. One helpful site that has
lots of GIS symbol fonts that can be downloaded for free is found here:
http://www.mapsymbols.com/symbols2.html. For this exercise, we are downloading and

unzipping the military true type fonts from the site. Downloading and unzipping the file
produces a file with the extension .ttf, which is a true type font. The next step is to find the
Fonts option in the Control Panel.

330f 85

- - (e =1]
» Control Panel » ~ | 43 | search o]
Edit View Tools Help
= 2
Name Categol 2
Control Panel Home 3 L I
- pi, -
o Classic View b7 ’ﬁ ,(& }
e & o
m Attt “utoPlay Backup and Color Date and Default
Restore C... Management Time Programs

L h S @

Windows Vista « -

s

w o< Doy g

) :
1 Add, change, and manage fonts on your computer. h

iSCSl Initiator Java Keyboard Mail Mouse Networkand =~ NVIDIA
Sharing Ce... Contr... JI
OfflineFiles Penand People Near Perfformance Persenaliz., Phone and Power
Input Devices Me Informatio... Modem ... Options
] - -

= P. & e @I!
Printers Problem Program Programs QuickTime Regional and Scanners and

Reports a... Updates and Features Language .. Cameras

Figure 37:Fonts in Control Panel

Clicking on this folder will open the folder showing all of the currently installed true type fonts.
Right click anywhere in this folder that is not directly on one of the existing fonts, and you will
expose the context menu shown in the following figure. Choose “Install New Font”. You will
have to browse to your recently downloaded and unzipped .ttf file. In this case we are using the
Military.ttf file.

Favorite Li

§ Dropb
i Spring
More

Folders

nks

K US Sha...

0x

»

v

| Mame Font type Size
| - Agency FB
OpenType

%

515 KB

Agency FBE Bold
OpenType

53.2 KB
Aharoni Bold
OpenType

49.1 KB
Algerian
OpenType

7135 KB

Sort By
Group By
Stack By
Refresh

Paste
Paste Shortcut
Undo Delete

Install New Font...

- v v ¥

Ctrl+Z

Figure 38: Right Click to Install New Font

34 of 85

We can verify that the new font is available directly by running MapWindow 6.0, or our newly
create program, adding a point layer, and then symbolizing with character symbols. To use
character symbols, double click on the symbol in the legend. This will open the Point Symbolizer

Dialog. There is a Combo-box named “Symbol Type” which enables the user to choose a new
symbol type. In this case, we want to choose Character.

|
Point Symbolizer Dialog

Symbolizer Characteristics
Scale Mode: | Symbolic ﬂ

W Smoothing Units: | Picel hd
Symbol Type: | Simple j
Simple l

Style; | Rectangle

Character _Je

line

- Use Outline

Figure 39: Switch To Characters

Peint Symbolizer Dialog @Iéj
Symbolizer Characteristics Preview:
Scale Mode: | Symbolic -
¥ Smoothing Units: | Pixel hd
Symbol Type: [Character _v|
Character] Add to Custom Symbols
FEont Family: Placement
ap bo = Svmbal Size: |
Micresoft YaHei pAR
Microsoft i Baiti 252 ~Aa < @ J
[Military . M I
HMingLil ABC I Ita ry . |
| | MingLiU-ExtB ABC ’?
MingLi_HKSCS 4BC 2 o=
MingLiU_HKSCS-BEdtB ABC
Minya Nouvelle 2 | =
DO BR[O Ofset
wl o[[T]]a] % fo
e lalelnmleleln] = i
Eﬁ'F'| x‘ 4| 6‘ Unicode 65
oK ‘ Cancel | Apply |

Figure 40: Choose Military

Once you select military, the icons listed below in the character selection drop-down should be
replaced with the new military symbols that we have just downloaded. Because many GIS

35 of 85

systems use true type fonts, it is possible for MapWindow to show font types from pre-created
professional font sets. Having verified that we have successfully enabled the software to use
the new military font type, we will now attempt to use one of these symbols programmatically.
To draw planes, we will choose the character M, which draws a character of a plane, and specify
the use of the Military font name. We can also specify that they will be blue and will have a
point size of 16.

myLayer.Symbolizer = new PointSymbolizer(*M*, "Military', Color.Blue, 16);

Developer Exercise 1

File

»

=l & |Map Layers
=] citieswithareas
« 4

Ready.

Figure 41: Military Plane Characters

As a side note, the Military font is slightly abnormal in that it has a huge amount of white space
at the bottom of each glyph. Attempting to center the font vertically will cause problems
because of all the whitespace. As a result, an added line of code catches this possibility and uses
the width for centering instead. Since these symbols may not be exactly square, this may place
the military symbols slightly off center. However, more professionally created symbols will be
centered correctly since they will have a realistic height value that can be used for centering. It
is also possible to create custom glyphs for use as point symbols using various font editor
software packages. A good commercial example is Font Creator, which has a 30 day free trial
and can be purchased for about $100 here: http://www.high-logic.com/download.html. In the

spirit of open source, however, there are also open source options available such as Font Forge:
http://fontforge.sourceforge.net/ and Font Editor: http://fonteditor.org/ both of which are
completely free.

36 of 85

1.4.4. Image Symbols

\
Obijective: J

Use Image Symbols

Sometimes, it simply isn’t possible to work with fonts, however, and an image is preferable. In
such a case, you can use almost any kind of image. Remember that if you have lots of points, it
is better to be working with smaller images. As an example, you can download this wiki-media

tiger icon to work with:

http://upload.wikimedia.org/wikipedia/commons/thumb/f/f5/Tiger Icon.svg/48px-

Tiger lcon.svg.png

To use this symbol programmatically, first download the image to a file. Once you have saved
the image file, you reference it using either standard file loading methods for images, or else
you can embed the file as a resource to be used. We will look at embedding the image as a
resource. First, from solution explorer, add a resource file named Images.

yer)

L

e [ty

2]
b

Solution Explorer - Build_A_Map

J Selution 'Build_A_Map' (1 project)

= 3

+ a1 Ref
+ _=| For
. cﬁ Pro

MNew Item...

Existing Item...

MNew Folder

MNew from Template »
Windows Form...

User Control...
Component...

Class...

E5)

&
&

Rebuild

Clean

Publish...

Add

Add Reference...

Add Service Reference...
View Class Diagram

Set as StartUp Project
Debug

Cut

Paste

Figure 42: Add a New Item

37 of 85

Add New Item - Build_A_Map (P [

Categories: Templates: |
Visual C# ltems = -
Code ij Report Wizard
Data i Resources File
General | Service-based Database
Web] Settings File
Windows Forms A Style Sheet
WPE =] TextFile £
Reporting & User Control W
Warkflow =] User Control (WPF)
AR WCF Service il
R T
Afile for storing resources
Name: Images.resx

Figure 43: Images.resx Resource

Choose Resources File from the available Templates, then name the resource file Images, and
click Add. From solution explorer, simply double click the newly added Images resource file to
open it. Adding it the first time should automatically open the resource file as a tab. Under the
Add Resource option in the toobar just below the Images.resx tab, choose “Add Existing File...”

0@ Build_A_Map - Microsoft Visual Studio (Administrator) -

File Edit View Project Build Debug Data Tools
b Debug -] 5 R IE =

Images.resx | Start Page rForml.c:[D?_sign] rProgram.u
|8 Images - |] Add Resource ~ Remove Resource

Add Existing File...

[xoao0L 3¢

Add Mew String

MNew Image ’
Add Mew Icon

Add Mew Text File

Figure 44: Add an Existing File

Then simply browse to the file we just downloaded, and add it to the resource file. To make it
easier to find, we can rename the file “Tiger”.

38 of 85

'ﬁg Build_A_Map - Microsoft Visual Studio (A

File Edit View Project Build Deb
- Debug s l-"_j o ;E ;5
Images.resx™| Start Page | Forml.cs

|8] Images -] Add Resource -

Tiger

HOQIOOL 5

Figure 45: Rename to Tiger

Now, we can programmatically reference this image any time using the Images.Tiger reference.
Be sure to build the project after adding the image to the resource file, or else the Intellisense
will not show the Tiger image yet. Adding the image to a resource file sets up the framework for
the following line of code where we will specify to use the Tiger image for the point symbology:

myLayer.Symbolizer = new PointSymbolizer(lmages.Tiger, 48);

Developer Exercise 3

B £F Map Layers
B citieswithareas

Ready.

Figure 46: Tiger Images

39 of 85

1.4.5. Point Categories

\
Objective: J Use Point Symbol Categories

For the next topic, | will introduce the concept of casting. In many cases, methods or
properties are shared between many different types of classes. When that is true, the interface
may provide the shared base class, instead of the class type that is actually being used. For
instance, if you are working with points, the Symbolizer that is being used should be a
PointSymbolizer. This has a shared base class with the FeatureSymbolizer.

I TFeatureSymbolizer

[FeatureSymbolizer A
Class
= Legendltem

= Properties
O 2 IsVisible g
ﬁ} ScaleMode
= Smoothing
B Units
+ Methods

i

| - | |
J ILineSymbolizer I IPolygonSymbelizer
1 1

[PointSymbolizer
1

| PointSymbolizer 2 | LineSymbolizer 2 | PolygonSymbolizer A
Class Class Class
- FeatureSymbolizer -+ FeatureSymbolizer =+ FeatureSymbolizer
= Properties = Properties = Properties
2 Symbols 5 Strokes 21 QutlineSymbelizer
A Methods A Methods B Patterns
/ N / * Methods

Figure 47: Symbolizer Class Diagram

To illustrate inheritance, the class diagram above shows the three main feature symbolizers, one
for points, one for lines, and one for polygons. What is most important here is that there are
some characteristics that will be shared. Properties, methods and events on the
FeatureSymbolizer class will also appear on each of the specialized classes. Meanwhile, each
individual type has a collection of classes that actually do the drawing, but these classes are
different depending on the class. In the same way, we can set up categories, but it works much
more easily if we know what kind of feature layer we are working with. When working with
categories, schemes, and so-on, knowing that we are working with a point layer is the difference

40 of 85

between having to cast every single object every time, and only having to cast the feature layer
once.

We will be symbolizing based on the Area field. The areas were calculated from the polygons in
exercise 2, so we can be assured that the cities with areas shapefile that we are adding has an
Area field, and looking at the table below, we can see that a reasonable cutoff for picking the
largest cities might be .01 square decimal degrees.

LAYER FACC_Featu
_

SYDNEY Built-Up Area | ALO20 0.101203564
PERTH Built-Up Area | ALOZ20 0.049422034
ADELAIDE Built-Up Area | ALOZ20 0.039210135
BRISBANE Built-Up Area | ALOZ20 0.0368049424
GEELONG Built-Up Area | ALOZ20 0.010352121
NEWCASTLE Built-Up Area | ALO20 0.0094694

CRONULLA Built-Up Area | ALOZ20 0.005753863

Figure 48: Large Area Cities

The source code that we are going to use has several parts to it. First, we are going to cast the
layer to a MapPointLayer so that we know we are working with point data. After that, we create
two separate categories, using filter expressions to separate what is drawn by each category.
Finally, we add the new scheme as the layer’s symbology. When the map is drawn, it will
automatically show the different scheme types in the legend using whatever we specify here as
the legend text.

IMapPointLayer myPointLayer = mylLayer as IMapPointLayer;

if(myPointLayer == null) return;

PointScheme myScheme = new PointScheme();

myScheme.Categories.Clear();

PointCategory smallSize = new PointCategory(Color.Blue, PointShapes.Rectangle, 4);
smallSize.FilterExpression = "[Area] < .01";

smallSize.LegendText = "Small Cities";

myScheme .AddCategory(smallSize);

PointCategory largeSize = new PointCategory(Color.Yellow, PointShapes.Star, 16);
largeSize.FilterExpression = "[Area] >= .01";

largeSize.LegendText = "Large Cities";
largeSize.Symbolizer.SetOutline(Color.Black, 1);

myScheme .AddCategory(largeSize);

myPointLayer.Symbology = myScheme;

41 of 85

Developer Exercise 3 | (] e |

File

B £F |Map Layers
=] citieswithareas

= Small Cities - }
4T Large Cities L. . :_."
0 - o"
- - wnalfy
N o
"=
. i

Ready.

Figure 49: City Categories by Area

The square brackets in the filter expression are optional, but recommended to help clarify
fieldnames in the expression. What is significant here is that we did not have to write code to
actually loop through all of the city shapes, test the area attribute programmatically, and then
assign a symbol scheme based on the character. Instead, we simply allow the built in expression
parsing to take over and handle the drawing for us. This allows for programmers to work with
the objects in a way that directly mimics how users work with the symbology controls. And just
like the layer dialog controls allow you to specify schemes; those schemes can also be controlled
programmatically.

IMapPointLayer myPointLayer = mylLayer as IMapPointLayer;
if (myPointLayer == null) return;
PointScheme myScheme = new PointScheme();
myScheme.Categories.Clear();
myScheme.EditorSettings.ClassificationType = ClassificationTypes.Quantities;
myScheme.EditorSettings. IntervalMethod = IntervallMethods.Quantile;
myScheme.EditorSettings. IntervalSnapMethod = IntervalSnaplMethods.Rounding;
myScheme.EditorSettings. IntervalRoundingDigits = 5;
myScheme.EditorSettings.TemplateSymbolizer =

new PointSymbolizer(Color.Yellow, PointShapes.Star, 16);
myScheme.EditorSettings.FieldName = "Area';
myScheme.CreateCategories(myLayer.DataSet.DataTable);
myPointLayer.Symbology = myScheme;

42 of 85

Developer Exercise 3 ==l X

File
RiEBEeEEOWP,P0E»D
Legend | Toolbax
E £F Map Layers

B citieswithareas

El Area

<= 0.00017
0.00017 - 0.00027
0.00027 - 0.00042
0.00042 - 0.00085
= 0.00085

Ready.

Figure 50: Quantile Area Categories

There are a large number of settings that can be controlled directly using the PointScheme. In
this illustration the classification type is quantities, but this can also be UniqueValues or custom.
The categories can always be edited programmatically after they are created, but this simply
controls what will happen when the CreateCategories method is ultimately called. As of the
Sydney alpha release (Oct. 2009) not every IntervalMethod is supported, but Quantile and Equal
Interval are both supported. The interval snap methods include none, rounding, significant
figures, and snapping to the nearest value. These can help the appearance of the categories in
the legend, but it can also cause trouble. In this particular case, we have to set the rounding
digits to a fairly high number (5) or else many categories simply show a range of 0 — 0 and have
no members. With Significant figures, the IntervalRoundingDigits controls the number of
significant figures instead. One property is deceptive in its power. The TemplateSymbolizer
property allows you to control the basic appearance of the categories for any property that is
not being controlled by either the size or color ramping. For example, if we wanted to add black
borders to the stars above, we would simply add that to the template symbolizer. In this case
we chose to make them appear as stars and controlled them to have equal sizes since
UseSizeRange defaults to false, but UseColorRange defaults to true.

43 of 85

¥

| EditorSettings
Class
= Descriptor . §
r FeatureEditorSettings =
= Properties Class
¥ EndColor - EditorSettings
= ExcludeExpression Broperties
' HueSatLight Toperties
=P HueShift B ClassificationType
2 IntervalMethod § Enclljllje
EF IntervalRoundingDigits) = 1= . ame
= IntervalSnapMethod = :radl?tlﬁ;ngle
oy MaxSampleCount = Drm-|e
B MumBreaks J StartSize
B RampColors B TemplateSymbolizer
2 StartColor B UseGradient
o UseColerRange Er UseSizeRange

Figure 51: Available Feature Editor Settings

The settings shown in the exercise above represent a small taste of the scheme options that are
programmatically available. You can also control the color range, whether or not the colors
should be ramped or randomly created, a normalization field, an exclusion expression to
eliminate outliers and in the case of polygons, a consistently applied gradient.

1.4.6. Compound Symbols

\
Objective: J Yellowstars in a Blue Circle

One of the new additions to how symbols work is that you are no longer restricted to
representing things using a single symbol. Complex symbols can be created, simply by adding
symbols to the Symbolizer.Symbols list. There are three basic kinds of symbols, Simple,
Character and Image based. These have some common characteristics, like the Angle, Offset
and Size, which are stored on the base class. In the derived classes, the characteristics that are
specific to the sub-class control those aspects of symbology. For creating new symbols, the
Subclass can be used. For working with individual symbols in the collection, you may need to
test what type of symbol you are working with before you will be able to control its properties.

44 of 85

—

T ICharacterSymbol

Class

L i iy i by i i L iy

(CharacterSymbol (&
=+ Symbol

= properties

Category
Character
CharacterSet
Code

Color
FontFamilyMame
Opacity

Style

XmlCelor

O 18ymbol

¢

| Symbol
Class
=+ Descriptor

= properties
= Angle
B Offset
f Size

= SymbolType

/]T PictureSymbaol

| PictureSymbol
Class
=+ OutlinedSymbaol

= properties
= Image
iy ImageFilename
= I=Disposed

= Cpacity

(Qutlinedsymbol (&
Class
=+ Symbaol

= properties
ﬁ CutlineColor
= CutlineCpacity
ZF OutlineWidth
= UseOutline
= ¥mlOutlineColar

—

-T-:' ISimpleSymbol

-

SimpleSymbol

Class
=+ QutlinedSymbal

v

= Properties
ﬁ Color
= Cpacity
= PointShape
= XmiColor

Figure 52: Point Symbol Class Diagram

The class diagram above shows the organization of the individual symbols.

PointSymbolizer myPointSymbolizer

new PointSymbolizer(Color.Blue, PointShapes.Ellipse, 16);
myPointSymbolizer.Symbols.Add(
new SimpleSymbol(Color.Yellow, PointShapes.Star, 10));
myLayer.Symbolizer = myPointSymbolizer;

Developer Exercise 3

oS e

iLegend| Toolbax |
B £F |Map Layers
=] citieswithareas

]

Ready.

Figure 53: Blue Circles with Yellow Stars

45 of 85

1.5. Programmatic Line Symbology

1.5.1. Adding Line Layers

8
Objective: J Add Line Layer 1

Line layers operate according to the same rules as points for the most part, except that instead
of individual symbols, we can have individual strokes. The default symbology is to have a single

line layer of a random color that is one pixel wide.

FeatureSet fs = new FeatureSet();
fs.Open(@"'[Your Folder]\Ex3\Data\MajorRoads.shp');
IMapFeatureLayer myLayer = mapl.Layers.Add(fs);

Geveloper bxercize 3 - T o)]

Figure 54: Add Line Layer

Simple Line symbols

;
Objective: J Brown Roads 1

private void BrownRoads(IMapFeatureLayer mylLayer)

{

myLayer.Symbolizer = new LineSymbolizer(Color.Brown, 1);

}

46 of 85

Developer Exercise 3 (o[& |

File

2 »
Teger

Figure 55: Brown Lines

1.5.2. Outlined Symbols

\
Objective: J Yellow Roads with Black Outlines 1

The line symbology is similar to the point symbology in that it also shares certain shortcut
methods like “SetOutline”. The distinction is that unlike the simple symbol, strokes cannot
come pre-equipped with an outline. Instead, the appearance of an outline is created by making
two passes with two separate strokes. The first stroke is wider, and black. The second stroke is
narrower and yellow. The result is a set of lines that appear to be connected. In order to get a
clean look at the intersections, all the black lines are drawn first. Then, all the yellow lines are
drawn. This way, the intersections appear to have continuous paths of yellow, rather than every
individual shape being terminated by a curving black outline.

LineSymbolizer road = new LineSymbolizer(Color.Yellow, 5);
road.SetOutline(Color.Black, 1);
myLayer.Symbolizer = road;

47 of 85

Developer Exercise 3 =ANCE X

File

=l £ Map Layers
= majorroads
[

Ready.

Figure 56: Yellow Roads with Outlines

1.5.3. Unique Values

\
Objective: J Roads Colored by Unique Tile ID

One of the more useful abilities is to be able to programmatically apply symbology by unique
values, without having to worry about what those values are or negotiate the actual color in
each case. Simply specify a classification type of UniqueValues and a classification field, and
MapWindow does the rest. In this case, the default editor settings will create a hue ramp with a
saturation and lightness in the range from .7 to .8. The editor settings can be used to control
the acceptable range using the Start and End color. There is a Boolean property called
HueSatLight. If this is true, then the ramp is created by adjusting the hue, saturation and
lightness between the start and end colors. If this is false, then the red, blue and green values
are ramped instead. In both cases, alpha (transparency) is ramped the same way.

48 of 85

LineScheme myScheme = new LineScheme();
myScheme.EditorSettings.ClassificationType = ClassificationTypes.UniqueValues;
myScheme_EditorSettings.FieldName = "tile_id";
myScheme.CreateCategories(myLayer.DataSet.DataTable);

myLayer.Symbology = myScheme;

= | G [|

Developer Exercise 3

File

REREFEORLOD D

= £F Map Layers
= majorroads

Eltile_id

k)l

32

3

)

38

kvl

3

40

41

42

Ready.

Figure 57: Roads with Unique Values

1.5.4. Custom Categories

8
Objective: J Custom Road Categories

In the previous example, the legend shows a collapsible field name in order to clarify the
meaning of the values appearing for each category. This can also be accomplished manually by
controlling the “AppearsinLegend” property on the scheme. If this is false, the categories will
appear directly below the layer. When it is true, you can control the text in the legend using the
scheme itself. Showing this principal in action, in this sample we will show the code that will
programmatically set up two categories, and also have them appear under a scheme in the
legend.

LineScheme myScheme = new LineScheme();

myScheme.Categories.Clear();

LineCategory low = new LineCategory(Color.Blue, 2);

low.FilterExpression = "[tile_id] < 36";

low.LegendText = "Low";

LineCategory high = new LineCategory(Color.Red, Color.Black, 6, DashStyle.Solid,
LineCap.Triangle);

high_FilterExpression = "[tile_id] >= 36";

49 of 85

high.LegendText = "High";
myScheme .AppearsinLegend = true;
myScheme.LegendText = "Tile ID";
myScheme .Categories.Add(low);
myScheme.Categories.Add(high);
myLayer.Symbology = myScheme;

Developer Exercise 3 - E@I&J
File
DEIRBFORLOE D
= £F Map Layers
= majorroads
El Tile ID

— Low
&= High

Ready.

Figure 58: Custom Line Categories

1.5.5. Compound Lines

N
Objective: J Lines with Multiple Strokes J

Each individual LineSymbolizer is made up of at least one, but potentially several strokes
overlapping each other. The two main forms of strokes that are supported natively by
MapWindow are Simple Strokes and Cartographic Strokes. Cartographic strokes have a few
more options that allow for custom dash configurations as well as specifying line decorations.
Decorations are basically just point symbols that can appear at the end of the stroke, or evenly
arranged along the length of the stroke.

50 of 85

[IStroke

I Stroke

e O ISimpleStroke
=+ Descriptor .
J | SimpleStroke S
= Properties S i ICartographicStroke
= StrokeStyle Rl - 3 =
CartographicStroke £
- i | = Properties Class
¥ GetColor = Color -+ SimpleStroke
o S = DashStyle = Properties
% ToPen oy Opacity '“P
¥ WriteXml [+ 1 overload) = width ﬁ: CompoundArray
= Method ' CompoundButtons
_ o %1 DashButtons
:.l.' ILineDecoration W GetColor ' DashCap
F . W SetColor o
LineDecoration S @ ToP ﬁj DashPatthrn
Class oren 2 Decorations
-+ Descriptor ' EndCap
ﬁj JoinType
= Properties 2 Offeet
2P FlipAll 2P StartCap
B FlipFirst = Methods
ZF MumSymbols @ ToPen
B Offset .
B RotateWithLine
iy Symbol
+ Nested Types

Figure 59: Stroke Class Hierarchy

In this example, we will take advantage of several powerful symbology options. We will use
cartographic strokes in order to create two very different type of line styles. In the first case, we
will create brown railroad ties. Using the standard “Dot” option for a simple cartographic line
would not work because the dots created are proportional to the line width. However, with a
custom dash pattern, it is possible to set the lines so that the dashes are thinner than the line
width itself. The two numbers used in the dash pattern do not represent offsets, but rather the
lengths of the dash and non-dash elements that alternate. This is convenient, since for our
repeating ties, we really only need to specify two numbers.

The second layer of the symbol will be dark gray rails. In this case, the dash pattern is
continuous, so we will not need to change it. However, the rails don’t persist the whole way
across the line the way the ties do. Instead, we want to have two thin lines that appear along
the path width. To do this, we take advantage of a CompoundArray. With the compound array,
you are expressing the actual offsets for the start and end positions along the compound array,
where 0 is the left of the line and 1 is the right. In some cases, lines that are two thin may not
get drawn at all, so try to ensure that the width of the lines represented in the Compound array
work out to be just slightly larger than 1 to ensure that the lines ultimately get drawn.

In the code below, the start and end caps are also specified. By default these are set to round,
which will end up producing gray circles at each of the intersections. By specifying that the end
caps should be flat, no extension will be added to ends of the lines. Rounded caps look the best

51 of 85

for solid lines because it creates a kind of rounded, buffered look to roads that are

one pixel.

LineSymbolizer mySymbolizer = new LineSymbolizer();
mySymbolizer.Strokes.Clear();

CartographicStroke ties = new CartographicStroke(Color.Brown);
ties._DashPattern = new float[] {1/6F, 2/6F};

ties.Width = 6;

ties.EndCap = LineCap.Flat;

ties.StartCap = LineCap.Flat;

CartographicStroke rails = new CartographicStroke(Color.DarkGray)
rails.CompoundArray = new float[1{.15F,.3f,.6F,.75f};
rails.Width = 6;

rails.EndCap = LineCap.Flat;

rails.StartCap = LineCap.Flat;

mySymbolizer.Strokes._Add(ties);
mySymbolizer.Strokes.Add(rails);

myLayer.Symbolizer = mySymbolizer;

Developer Exercise 3 » . E@g

Legend

= £ |Map Layers
= majorroads

o

Wiy,
kg
W\'\\‘”hir‘nmll

e
F \\:'I\\S);"nl'---’.'.lw PR R

Figure 60: Multi-Stroke RailRoads

52 of 85

wider than

1.5.6. Line Decorations

\
Objective: J Lines Decorated by Stars 1

One of the new features with this generation of MapWindow is the ability to add point
decorations to lines. Each decoration has one symbolizer and can operate with several
positioning options. Each stroke can support multiple decorations, so there is a great deal of
customizable patterns available. The decorations can also be given an offset so that the
decoration can appear on one side of the line or another. In this case, we will be adding yellow
stars to a blue line.

LineDecoration star = new LineDecoration();

star.Symbol = new PointSymbolizer(Color.Yellow, PointShapes.Star, 16);
star.Symbol .SetOutline(Color.Black, 1);

star.NumSymbols = 1;

CartographicStroke blueStroke = new CartographicStroke(Color.Blue);
blueStroke.Decorations.Add(star);

LineSymbolizer starLine = new LineSymbolizer();
starLine.Strokes.Clear();

starLine.Strokes.Add(blueStroke);

myLayer.Symbolizer = starlLine;

R — e
Developer Exercise 3 E@g

File

Legend

=l £ |Map Layers
= majorroads

Ready.

Figure 61: Lines with Star Decorations

53 of 85

1.6. Programmatic Polygon Symbology

1.6.1. Add Polygon Layers

5
Objective: J Add a Polygon Layer to the Map

Polygon layers are another representation of vector content where there is an area being
surrounded by a boundary. Polygons can have any number of holes, which are represented as
inner rings that should not be filled. However, in order to represent a shape like Hawaii, which
has several islands, as a single shape, you would use a MultiPolygon instead. A MultiPolygon is
still considered to be a geometry and will respond to all of the geometry methods, like
Intersects. We can add the polygon shapefile the same way that we added the point or line
shapefiles.

Polygon symbolizers are slightly different from the other two symbolizers because in the case of
polygons, we have to describe both the borders and the interior. Since the borders are basically
just lines, rather than replicating all the symbology options as part of the polygon symbolizer
directly, each polygon symbolizer references a line symbolizer in order to describe the borders.
This is a similar strategy to re-using the PointSymbolizer in order to describe the decorations
that can appear on lines.

FeatureSet fs = new FeatureSet();
fs.Open(@"'[Your folder]\Ex3\Data\MajorBoundaries.shp');
IMapFeatureLayer myLayer = mapl.Layers.Add(fs);

Developer Exercise 3 = | B

File
DURBEURLOE D

 Tegend }| Toolbox

= £F Map Layers
B majorboundaries

O

Ready.

Figure 62: Add Major Boundaries

54 of 85

1.6.2. Simple Patterns

N
Objective: J Specify Blue Polygons 1

The simplest task with polygons is to set the fill color for those polygons. You will see
that specifying only an interior fill creates a continuous appearance, since the normal
boundaries are adjacent and all the same color.

private void BluePolygons(lIMapFeaturelLayer mylLayer)

{
PolygonSymbolizer lightblue = new PolygonSymbolizer(Color.LightBlue);
myLayer.Symbolizer = lightblue;
3
Developer Exercise 3 - = Develaper Exercise 3 - e
File File
ERRERE L RSN NE:)
Legend || Toolbax|
E £ |Map Layers = £F Map Layers
B [majorboundaries & [¥] majorboundaries
| O
i
Ready. | J Ready.
Figure 63: Blue Fill Only Figure 64: With Blue Border

55 of 85

PolygonSymbolizer lightblue = new PolygonSymbolizer(Color.LightBlue);
lightblue.OutlineSymbolizer = new LineSymbolizer(Color.Blue, 1);
myLayer.Symbolizer = lightblue;

1.6.3. Gradients

\
Objective: J

Full Layer Gradient

One of the more elegant symbology options is to apply a gradient. These can vary in type from
linear, to circular to rectangular, with the most frequently used type of gradient by far being
linear. If you want to apply a continuous gradient across the entire layer, you can use the
default category and simply specify the symbolizer. Unlike the previous example where we
directly set up the outline symbolizer, in this example we are taking advantage of the shared
method “SetOutline” which does the same thing. For points, this method controls the symbols
themselves. For lines, this adds a slightly larger stroke beneath the existing strokes. For
polygons, this controls the line symbolizer that is used to draw the outline. The gradient angle is
specified in degrees, moving counter-clockwise from the positive x axis.

PolygonSymbolizer blueGradient =

new PolygonSymbolizer(Color.LightSkyBlue, Color.DarkBlue, 45, GradientTypes.Linear);
blueGradient._SetOutline(Color.Yellow, 1);

myLayer.Symbolizer = blueGradient;

56 of 85

-
Developer Exercise 3 e, - - @M

File

B £ Map Layers
= ¥ majorboundaries

Ready. I

Figure 65: Continuous Blue Gradient

1.6.4. Individual Gradients

\
Objective: J

Shape Specific Gradients]

Another possible symbology is to create the gradients so that they are shape specific. This is not
really recommended in the case of large numbers of polygons because the drawing gets linearly
slower for each specific drawing call. You can draw thousands of polygons with one call by
having only one symbolic class to describe all the polygons. In the case of a few hundred
classes, this distinction is not really noticeable. To rapidly create different categories, we can
take advantage of the “nam” field which is different for each of the major shapes that we
selected as part of exercise 1 in order to create the basic polygon shapefile.

57 of 85

narm £ | Cnt_nam
1

NEW SOUTH WALES 21
NORTHERMN TERRITORY a0
QUEENSLAND 149
SOUTH AUSTRALIA 23
TASMANIA 27
VICTORIA 19
WESTERN AUSTRAL WESTERN AUSTRALLAS

Figure 66: Major Boundaries Fields

PolygonSymbolizer blueGradient =

new PolygonSymbolizer(Color.LightSkyBlue, Color.DarkBlue, -45, GradientTypes.Linear);
blueGradient.SetOutline(Color.Yellow, 1);

PolygonScheme myScheme = new PolygonScheme();

myScheme .EditorSettings.TemplateSymbolizer = blueGradient;

myScheme .EditorSettings.UseColorRange = false;
myScheme.EditorSettings.ClassificationType = ClassificationTypes.UniqueValues;
myScheme.EditorSettings.FieldName = "nam';
myScheme.CreateCategories(myLayer.DataSet.DataTable);

myLayer.Symbology = myScheme;

Developer Exercise 3 Elﬂlg

&
®

File

Legend | Toolbox
=g
= majorboundaries
Elnam

Ml AUSTRALIAN CARITAL TERRITORY
Ml MNEW SOUTH WALES
Ml MORTHERN TERRITORY
M cueensLAND
Il SOUTH AUSTRALIA
l TasmaniA
M vcToRrA
Ml V/ESTERN AUSTRALIA

« Il | »

Ready. ol

Figure 67: Individual Gradients

1.6.5. Multi-Colored Gradients

58 of 85

\
Objective: J

Cool Colors with Gradient

One thing that may seem less than obvious is that in the previous exercise we specified that the
UseGradient property should be false. This does not prevent the template symbolizer from
having a gradient. Instead, it prevents the symbolizer from overriding the original, presumably
simpler, template with a gradient symbol. The gradient symbol will be calculated using a color
from the color range, but then will make the upper left a little lighter and the lower right a little
darker. That way, you can have the same subtle gradient applied, but still use different colors
for each category. To boot, the default polygon symbolizer has a border that is the same hue,
but slightly darker, which tends to create a nice outline color.

PolygonScheme myScheme = new PolygonScheme();
myScheme.EditorSettings.StartColor = Color.LightGreen;
myScheme.EditorSettings.EndColor = Color.LightBlue;
myScheme.EditorSettings.ClassificationType =

ClassificationTypes.UniqueValues;
myScheme.EditorSettings.FieldName = "nam";
myScheme.EditorSettings.UseGradient = true;
myScheme.CreateCategories(myLayer.DataSet.DataTable);
myLayer.Symbology = myScheme;

Developer Exercise 3 . =neen X

File

Legend | Toolbax

= £ Map Layers
l = majorboundaries
El nam
(] AUSTRALIAN CAPITAL TERRITORY
[] NEw SOUTH WALES
[_] NORTHERN TERRITORY
[] QUEENSLAND
[] SOUTH AUSTRALIA
[] Tasmania
[] wcToRIA
[] WESTERN AUSTRALIA

Ready:.

Figure 68: Unique Cool Colors With Gradient

59 of 85

1.6.6. Custom Polygon Categories

Objective: J Custom Polygon Categories 1

An important terminology difference here that we have been using is the difference between
Symbolizer and Symbology. With Symbology, we are always referring to a scheme, which can
have many categories. With a Symbolizer, we are talking about controlling how those shapes
are drawn for one category. By default, all the feature layers start with a scheme that has
exactly one category, which has a symbolizer with exactly one drawing element (symbol, line or
pattern). The Symbolizer property on a layer is a shortcut to the top-most category. If you have
several categories, it may be better to control the symbolizers explicitly than to use the shortcut.
Labels have been added to the layer below in order to illustrate that the two pink shapes are in
fact shapes that start with N. The actual labeling code will be illustrated under a separate
section under labeling.

PolygonScheme scheme = new PolygonScheme();
PolygonCategory queensland = new PolygonCategory(Color.LightBlue, Color.DarkBlue, 1);

queensland.FilterExpression = "[nam] = "Queensland®*;

queensland.LegendText = "Queensland";

PolygonCategory nWords = new PolygonCategory(Color.Pink, Color.DarkRed, 1);
nWords.FilterExpression = "[nam] Like *N*"";

nWords.LegendText = N - Words";
scheme.ClearCategories();

scheme .AddCategory(queensland);
scheme.AddCategory(nWords);
myLayer.ShowLabels = true;
myLayer .Symbology = scheme;

Developer Exercise 3 = | E]

File

DeRe+ONR,0EED

Legend _—

. | Zoom to Maximum Extents l
= £F |Map Layers K

= majorboundaries

l:‘ Queensland

] N-ords

Ready.

Figure 69: Custom Categories

60 of 85

1.6.7. Compound Patterns

\
Objective: J Multi-Layer Patterns

Like the other previous symbolizers, polygon symbolizers can be built out of overlapping
drawing elements. In this case they are referred to as patterns. The main patterns currently
supported are simple, gradient, picture and hatch patterns. Simple patterns are a solid fill color,
while gradient patterns can work with gradients set up as an array of colors organized in floating
point positions from 0 to 1. The angle controls the direction of linear and rectangular gradients.
Hatch patterns can be built from an enumeration of hatch styles. Picture patterns allow for
scaling and rotating a selected picture from a file.

O IGradientPattern © IPattern (D ISimplePattern
| GradientPattern 2 | Pattern & | SimplePattern &
Class r~| Class] Class
-+ Pattern - -+ Descriptor - =+ Pattern
§ L) IHatchPattern T I IPicturePattern f
B Pr:}perties (HatchPattern) B Pr:::'perties (PicturePattern 2 B Pr?perties
“ Angle Class % Bounds Class = FillColor
Colors -+ Pattern 1 2 outline -+ Pattern 1 o Opacity
= GradientType o i - = PatternType o . . = Methods
i e = Properties i o = Properties
' Positions r'“P L ' UseQutline L r'“p % GetFillColor
= Methods ' BackColor = Methods 1 Angle !
“ Eorelol # DislogFilt % SetfillCelor
@ GetFillColor - H°rteh°;:: @ CopyOutline - p_'atc’g et '
@ SetfillColor Breh=ne % GetFillColor o e
= Methods @ SefillColor ﬁj PictureFilename
@ GefFillColor EY Scale
% SetfillColor EF' WrapMode
=l Methods
¥ Open

Figure 70: Pattern Class Diagram

One thing in particular to note about this next example is that in all the previous examples with
multiple patterns, we simply cleared out the default pattern that was automatically created as
part of the symbolizer. When we add a new pattern, the new pattern gets drawn on top of the
previous patterns, so the last pattern added has the highest drawing priority. In the code below,
the new pattern has its background color set to transparent, yet in the image below we see that
the coloring is red stripes against a blue background. The pattern below the red-stripe pattern is
the default pattern, and will be randomly generated as a different color each time.

61 of 85

PolygonSymbolizer mySymbolizer = new PolygonSymbolizer();
mySymbolizer.Patterns.Add(
new HatchPattern(HatchStyle.WideDownwardDiagonal, Color.Red, Color.Transparent));

myLayer.Symbolizer = mySymbolizer;

Developer Exercise 3

File
DLBeRYRLPOE D
= £ Map Layers

B V] majorboundaries

&N

N

Figure 71: Hatch patterns

1.7. Programmatic Labels

Objective:] Labels J

For the first example with labels, we will show adding your own text in a way so that the same
text gets added to all the features. This uses the default settings, and you can see from the
default settings that there is no background, and each label has the left side aligned with the

center point by default.

IMapLabelLayer labelLayer = new MapLabellLayer();
labelLayer.Symbology.Categories[0].Expression = "Test";
myLayer.ShowLabels = true;

myLayer.LabelLayer = labellLayer;

62 of 85

B
Developer Exercise 3 o[BS

File

B £F |Map Layers
=] majorboundaries

(I

Ready.

Figure 72: Adding Test labels

1.7.1. Field Name Expressions
h
Objective: J Field Name Labels 1

The field name in this case describes the name of the territory. In order for the name field to
appear in the label text, we simply enclose it in square brackets. This puts together a versatile
scenario where you can build complex expressions with various field names. You can also use
escape characters to create multi-line labels.

IMapLabelLayer labelLayer = new MapLabellLayer();

ILabelCategory category = labellLayer.Symbology.Categories[0];
category.Expression = "[nam]";

category.Symbolizer.Orientation = ContentAlignment_MiddleCenter;
myLayer.ShowLabels = true;

myLayer.LabelLayer = labellLayer;

63 of 85

Developer Exercise 3 =N X

File

El £F |Map Layers
= majorboundaries

O

HERN TERR|TORY

QUEENSLANLY
ESTERN AUSTRALIA

NEW SOUTH W.
' A RITAL 1

TAE:Ehm

Ready.

Figure 73: Field Name Labels

1.7.2. Multi-Line Labels

8
Objective: J Multi-Line Labels J

Creating multi-line labels is simple, since all you have to do is use the standard .Net new-line
character, which in C# is added using the /n, while in visual basic you would combine the two
strings with a voNewLine element between them. The relative position of the multiple lines is
controlled by the Alignment property on the label Symbolizer. In order to minimize confusion,
the labels follow the same organization with a scheme, categories and symbolizers. A filter
expression also allows us to control which labels are added.

IMapLabelLayer labelLayer = new MapLabellLayer();

ILabelCategory category = labellLayer.Symbology.Categories[0];

category.Expression = "[nam]\nID: [Cnt_nam]";

category.FilterExpression = "[nam] Like "N*"";
category.Symbolizer.BackColorEnabled = true;

64 of 85

category.Symbolizer.BorderVisible = true;
category.Symbolizer.Orientation = ContentAlignment_MiddleCenter;
category.Symbolizer_Alignment = StringAlignment.Center;

myLayer.ShowLabels = true;
myLayer.LabelLayer = labellLayer;
[Developer Exercise 3 - . SEECE)

File

= £ |Map Layers
= majorboundaries

|

NORTHERN TERRITORY
1D: 90

NEW SOUTH WALE|
1D: 21

Ready.

Figure 74: Multi-Line Labels

Multiple label categories can be created and added to the scheme in the same way that the
featuresets were able to add different categories. The labels also allow for the font to be
controlled, as well as the text color, background color and opacity of either.

1.7.3. Translucent Labels

8
Objective: J

Translucent Labels

The background color in this case has been set to transparent by specifying an alpha value of
something less than 255 when setting the BackColor. Frequently, there are opacity properties
available in addition to the actual color, but that is just there for serialization purposes and is
simply a shortcut to the alpha channel of the color structure. This example also illustrates the
use of the compound conjunction “OR” in the filter expression. Other powerful terms that can
be used are “AND” and “NOT” as well as the combined expression “Is Null” which is case
insensitive and can identify null values separately from empty strings for instance. Notice that is

65 of 85

not “= null” which doesn’t work with .Net DataTables. For the negative you could use “NOT
[nam] is null”.

IMapLabellLayer labelLayer = new MaplLabellLayer(Q);

ILabelCategory category = labellLayer.Symbology.Categories[0];
category.Expression = "[nam]\nID: [Cnt_nam]";
category.FilterExpression = "[nam] = "Tasmania® OR [nam] = "Queensland®";
category.Symbolizer._BackColorEnabled = true;
category.Symbolizer.BackColor = Color.FromArgh(128, Color.LightBlue);
category.Symbolizer.BorderVisible = true;
category.Symbolizer._FontStyle = FontStyle.Bold;
category.Symbolizer._FontColor = Color.DarkRed;
category.Symbolizer.Orientation = ContentAlignment_MiddleCenter;
category.Symbolizer_Alignment = StringAlignment.Center;

myLayer .ShowLabels = true;

myLayer .LabelLayer = labellLayer;

Deoperercie . Lo =loes

File

=8

= majorboundaries
=
f
|
TASMANIA
e
Ready. e
Figure 75: Translucent Labels
1.8. Programmatic Raster Symbology

66 of 85

1.8.1. Download Data

Objective: Download a Raster Layer

In addition to the vector data that we have been looking at so far, MapWindow also supports a
number of raster formats. Rasters are considered distinct from images for us in that the visual
representation that we see is derived from the values much in the way that we derive the
polygon images from the actual data. With rasters, you typically have a rectangular
arrangement of values that are organized in rows and columns. For datasets that don’t have
complete sampling, a “No-Data” value allows the raster to only represent a portion of the total
area.

Because of the existence of extensible data format providers, there is no way to tell just how
many formats MapWindow will support at the time you are reading this. We have created a
plug-in that is exclusive to the windows platform using Frank Warmerdan’s GDAL libraries and
C# linkage files. The plug-in exposes many of the raster and image types supported by GDAL to
MapWindow 6, or any project that adds our ApplicationManager component. While the
situation may change before the beta release, for the Sidney Alpha, only one grid format is
supported natively (that is without using GDAL) and that is a bgd format. This is not a problem
for independent developers because of our clever system that enables you to add a single
ApplicationManager to the project and empower your own project with all the data format
extensions that work with MapWindow 6. However, since that won't be covered at this stage of
the tutorials, we will use the MapWindow 6 application to convert a raster file to the format we
need. A good provider of GIS data is the USGS. They provide many forms of data from around
the world, but in this case we are interested in an elevation dataset. A useful web utility for
browsing the web is called EarthExplorer. http://edcsns17.cr.usgs.gov/EarthExplorer/

67 of 85

1. Select your dataset(s) |§l 2. Enter your search criteria

Click on [f] next to the category name to show a list

of datasets. Address/Place @
name Search: (. .4 Feature search)
¥ Tcon means selected data within the Data Sets
‘can be downloaded at no charge. From (mm/dd/yyyy): 01/01/1920 [] To (mm/dd/yyyy): 12/31/2020 [
Aerial Photography [[] search these months only.
AVHRR
Commercial 6 P ' Terrai
Declassified Data a S : -E_m

= Digital Elevation (Related Links) o N
@ = SRTM i

Digital Line Graphs (Related Links)

Digital Maps (Related Links)

EO-1

Forest Carbon Sites

Global Land Survey

Landsat Archive (Related Links)

Landsat Legacy

Landsat MRLC

Radar

H sSPOT H
[@ SPOT (1986-1998) ¢ S 2] JAiistralia

ern
Austr

apData Sciences Pty Ltd, PSMA;

The up to date Google map is not for purchase or for download; it is to be used as a guide for reference and search
purposes only.

Selected Datasets

Figure 76: Earth Explorer

If the link above doesn’t work, you can try searching for USGS and looking for links that allow
you to search fro data by region. The map application is an easy to use system that provides a 1,
2, 3 Data download experience that is to be envied. Unfortunately, the system is also under
heavy demand, so you will have to be conservative with your requests from this site.

To get data, simply zoom into a region of interest and you will see that they have lots of
interesting data sets. For this demo, | activated the SRTM data format, which gives us digital
elevation information. You will have to be a registered user in order to download data from this
site, and not all the data is free. In this case, | downloaded a BIL file for this demonstration, but
other formats are available, including DTED. Both formats are supported by MapWindow by
using GDAL. The downloaded file will be zipped, so you will have to unzip the file before you can
open it with MapWindow 6. Before we can work with the data programmatically, we will use
MapWindow 6 to change the data format to bgd. This is actually as simple as opening the BIL,
right clicking on the legend and choosing export data. Don’t worry if the coloring looks strange.
It is usual for the no-data values to distort the coloring until they can be properly excluded from
the symbology. For now, we are only concerned with converting the format to an *.bgd file.

68 of 85

e
I

[W5- MapWindow 6.0 (Sydney Alpha)

File Edit View Selection GISTools Help Extensions
B EEarOXP0E D
Legend |Tuulbox|

E £ Map Layers

B V] ls34e75
. 0 Remove Layer

I:l 7 Zoom to Layer
Data [Export Data

I Properties

Figure 77: Export Data

49 Save As

OO0 [T etz » om s oo » O EE]

IR | =vation.bgd -

Save as type: ’Rasters (*.asc™adf; dtl ™ dtL 7 db2; ™ 4if tiff ter ® bil " on g Simg L g bgd) v]

* Browse Folders [Save] [Cancel]

Figure 78: Save as Bgd

You will see lots of other formats available, and these are the write formats that have been
exposed by the GDAL plugin, plus any formats that are supported for rasters by other providers.
You will notice that *.bgd is at the end of the list, and that is the provider that we will be using
for the rest of the demonstration. Save the downloaded file as a bgd file.

1.8.2. Add a Raster Layer

\
Objective: J Add A Raster Layer }

69 of 85

Raster r = new Raster();
r.Open(@"[Your Folder]\Ex3\Data\DEM\Elevation.bgd");
IMapRasterLayer myLayer = mapl.Layers.Add(r);

One thing that should be fairly obvious right away is that while similar to the previous examples,
a raster is a completely different data object. Instead of working with features and
concentrating on ideas like geometries, rasters give you direct access to the numerical data
stored in grid form. Inheritance at different levels is certainly used, but most of that occurs
under the hood. The Raster class gives you a friendly user interface that works regardless of
what kind of drivers are opperating under the hood. The primary benefit to you is that writing
the code becomes a lot simpler because you don’t need to worry about what kind of raster you
are working with.

-
Developer Exercise 3 | [

File
DURBEFOTLOD S D
Legend

= £ Map Layers
E [elevation

B o327

] 2278865535

Ready.

Figure 79: Default Raster

One fairly obvious drawback with the symbology above is that it is almost certainly being thrown
off by an unexpected no-data value. We can use the symbolizer interface for rasters in either
MapWindow 6.0 or your new project by double clicking next to the elevation layer in the legend.
This will launch a dialog like the one below.

70 of 85

Layer Properties B]
Symbology | Detailed Properties
ol o) = ¥ il
¥ Use Color Range
Symbol | Values Legend Text Court
s [| T S
e Range = a27s2-6553 32,768 - 65535
[L
Saturation Range:
(Mgl =
Lightness Range:
| =
Statistics | (araph |
[~ Hillshade .
elevation
Details
865,335
Light Direction r
(5]
\ 432668
Elevation Factor [2.7448398E-006 1 I
0.0000E+000 2768 £5.536
Columns: [40 =] I Show Std. Dev I Log Scale I~ Show Mean
oK Cancel Apply

Figure 80: Statistics

We can see right away that of the many sample points that were taken from this image, only
one or two values in the extreme upper range of 32,000 and 65,000 respectively can throw off
the entire symbolic range for this raster. We can repair this easily by sliding the symbolic sliders
down to the left end of the plot. What is less obvious until you start zooming in is that almost all
of the values are effectively no-data values of 0 and are showing up on our plot. You can use
the mouse wheel to zoom into and out of histogram, but in this case it will be very difficult to
see what is going on as long as the range includes zero. There is a trick that we can do in
specifically this situation. What we will do is manually enter a range from 1 to 250 and from 250
to 600 in the editable values column in the data grid above the graph. This won’t directly
change the graph. Instead, it will enable an innovative feature to work on the graph. A Zoom To
Categories option when right clicking the graph allows us to zoom into the range specified by
the categories above.

71 of 85

BT (PRI N g— ‘
Symbology | Detailed Properties |

¥ UseColorRange — |
HSL |Ree |

Symbol | Values | Legend Text | Count

Hue Range:

| < b

Saturstion Range:

<

Lightness Range:

] <

Zoom to
.| Categories elevation

Hillshade

Zoom To Categeries
Elevation Factor |2.7448398E-006 I

88D, 530
Light Direction
I 4533 Reset Zoom
_ 432668 ‘
1

0.0000E+000 32,768 65,535
Columns: |40 3: [~ Show Std. Dev. I™ Log Scale I~ Show Mean
QK | Cancel | Apply

Figure 81: Zoom To Categories

Statistics Graph

elevation

61,949

30,575

1 3 &00

Figure 82: After Zoom

We can see from the statistics here, that the large percentage of the points occur between
about 1 and 150, with a sizeable hump up to about 300. We will put the break slider in the
minimum that occurs at around a value of 150, or you can use 150 as the exact range in the
values column again. The result is that we can get a much more cleanly symbolized raster when

72 of 85

we are done. The no-data region is still white, but now we can see a much better
representation of the values that we do have since we have eliminated the outliners.

{4 MapWindow 6.0 (Sydney Alpha) (| D

File Edit View Selection GISTecls Help Extensions
BN LPOED
Legend |TO0Ibox|
= £ Map Layers
:
B -0
] 150-600
K — o
Ready. | X: -44.1546335, ¥: 10279546394

Figure 83: After Adjustments

So in order to set this up programmatically, we would like to first of all edit the range of the
categories that are automatically generated when adding the data layer so that we have a range
from 1-150 and from 150 to 800.

1.8.3. Control Category Range

N
Objective: J Control Category Range]

The only thing to notice when controlling the range is that you can control the range values
independently from modifying the legend text. In order to update the legend text based on
other settings, we can use the ApplyMinMax settings. Alternately, we could have set the legend
text directly, just as we can for the other categories.

private void ControlRange(IMapRasterLayer mylLayer)

{

myLayer.Symbolizer.Scheme.Categories[0].Range = new Range(l, 150);

myLayer .Symbolizer.Scheme.Categories[0].ApplyMinMax(myLayer.Symbolizer_EditorSettings);
myLayer.Symbolizer.Scheme.Categories[1].Range = new Range(150, 800);
myLayer.Symbolizer.Scheme.Categories[1].ApplyMinMax(myLayer.Symbolizer.EditorSettings);
myLayer . .WriteBitmap();

73 of 85

-
Developer Exercise 3

File

Legend | Toobox|
5 & g

=] elevation

B -5

[] 150- 800

Ready. al.:i

Figure 84: Programmatic Restrict Range

1.8.4. Shaded Relief

\
Objective: J Add Lighting]

myLayer.Symbolizer.Scheme.Categories[0].Range = new Range(l, 150);
myLayer.Symbolizer.Scheme.Categories[0].ApplyMinMax(myLayer.Symbolizer.EditorSettings);
myLayer.Symbolizer.Scheme.Categories[1].Range = new Range(150, 800);
myLayer.Symbolizer.Scheme.Categories[1].ApplyMinMax(myLayer.Symbolizer.EditorSettings);
myLayer.Symbolizer.ShadedRelief.ElevationFactor = 1;
myLayer.Symbolizer.ShadedRelief.IsUsed = true;

myLayer . WriteBitmap(Q);

74 of 85

Developer Exercise 3 E@g

File

Legend
E £F |Map Layers
E elevation
| IRERES]
] 150-200

Ready. __NH

Figure 85: With Lighting

1.8.5. Predefined Schemes

\

Objective: Use Glacier Coloring

There are several pre-defined color schemes that can be used. All of the pre-set schemes
basically use two separate ramps that subdivide the range and apply what is essentially a
coloring theme to the two ranges. Those ranges are easilly adjustable using the range
characteristics on the category, but should be adjusted after the scheme has been chosen, or
else applying the new scheme will overwrite the previous range choices.

myLayer.Symbolizer.Scheme.ApplyScheme(ColorSchemes.Glaciers, mylLayer.DataSet);

myLayer .Symbolizer.Scheme.Categories[0].Range = new Range(l, 150);

myLayer .Symbolizer.Scheme.Categories[0].ApplyMinMax(myLayer.Symbolizer_EditorSettings);
myLayer.Symbolizer.Scheme.Categories[1]-Range = new Range(150, 800);
myLayer.Symbolizer.Scheme.Categories[1].ApplyMinMax(myLayer.Symbolizer.EditorSettings);
myLayer.Symbolizer.ShadedRelief.ElevationFactor = 1;
myLayer.Symbolizer.ShadedRelief.IsUsed = true;

myLayer . .WriteBitmap();

75 of 85

Developer Exercise 3

Legend
E £F |Map Layers
E elevation
] 1-150
[] 150-200

Figure 86: Glaciers

1.8.6. Edit Raster Values

.
Objective: J Fix Raster Values }

Previously, we have been using tricks to color the elevation but where we directly ignored the
values that were either no-data values that read 0, or else apparently bad data values that
showed impossible values like 65,000. In this section we will use the raster data class itself in
order to repair the values programmatically. This will only alter the copy that we have in
memory and will not overwrite the values to the disk unless we specifically instruct it to do so.
In the example below, we can cycle through all of the values in the raster using the NumRows
and NumColumns properties to give us an idea of what the bounds are on the loops. The Value
property takes a double index, and will work with whatever the real data type is and convert
that data type into doubles. We can use this to quickly clean up the values on the raster before
we ever create a layer. We can also assign the no data value on the raster so that it matches the
0 values that cover a large portion of the raster. This will automatically eliminate it from the
statistical calculations so that our default symbology should look better.

76 of 85

Raster r = new Raster();
r.Open(@"'C:\dev\MapWindow6Dev\Tutorial\Components\Ex3\Data\DEM\Elevation.bgd");
r .NoDatavValue = 0;

for(int row = 0; row < r.NumRows; row++)

{
for(int col = 0; col < r.NumColumns; col++)
{
it (r.value[row, col] > 600) r.Value[row, col] = 600;
3
3

IMapRasterLayer myLayer = mapl.Layers.Add(r);

Developer Exercise 3 -e @E‘g

File

Legend
El £ |Map Layers
=] elevation
R
[201-e00

Ready. &

Figure 87: Default Symbology of Fixed Raster

This looks a lot better, and if we double click on the elevation layer, we can take a look at what
the statistical plot automatically shows. In the next figure, we can see that the default range
shows values from 1 to 600, and does not include in the statistical summary the values that we
have now labeled as “no-data” values. Assigning the no-data value can be risky because there
may be values that were using the old no-data value. This can easily be fixed by cycling through
the raster in the same way and adjusting values so that they work with the given statistics.

77 of 85

Removed

Zero — 0
Values

elevation

30975

1 3 600

Figure 88: After Fixing Raster

1.8.7. Quantile Breaks

\
Objective: J

Quantile Break Values 1

Just like the FeatureSets, Rasters can use the EditorSettings property in order to customize how
to build schemes, rather than having to specify the schemes directly. This is where our previous
edits to fix the raster values become more important. If we had tried to apply quantile breaks
before, instead of coloring the raster appropriately, we would have had all but one of the ranges
read 0-0. Now, we get a reasonable range.

myLayer.Symbolizer_EditorSettings. IntervalMethod = IntervallMethods.Quantile;
myLayer.Symbolizer _EditorSettings.NumBreaks = 5;
myLayer.Symbolizer.Scheme.CreateCategories(myLayer _DataSet);
myLayer.Symbolizer.ShadedRelief.ElevationFactor = 1;
myLayer.Symbolizer._ShadedRelief.lsUsed = true;

myLayer . .WriteBitmap();

78 of 85

fT“f IShadedRelief

[Developer Exercise 3 - -‘-_'
File
DEREETRL0oE D
Lo

5 & st

2 ¥ elevation
I «=28
e
7 s0-153

I 153-214

E mERn

| ShadedRelief (&
Class
= Descriptor

= Properties
Ambientlntensity
ElevationFactor
Extrusicn
HasChanged
[sUszed
LightDirecticn
LightIntensity
ZenithAngle

iy L Ly i iy iy iy iy

U el

Figure 89: Quantile Breaks

O IRasterSymbolizer

Figure 90: Raster Symbology Classes

79 of 85

n I _,
RasterSymbolizer (%] EditorSettings (#]
Class Class
=+ Legendltem = Descriptor
T T

= Properties = Properties
ﬁ CelerSchemeHasChanged ﬁ EndColor
ey ColorschemeHasUpdated =) ExcludeExpression
P EditorSettings % HueSatLight
' ElevationFactor = HueShift
= Extrusion % IntervalMethod
ey IrmageCutline =) IntervalRoundingDigits
=P IsVisible % IntervalSnapMethod
' NoDataColor ey MaxSampleCount
ey Cpacity = NumBreaks
e ParentLayer = RampCeclors
' Raster = StartColor
? Scheme ﬁ UseColorRange
%7 ShadedRelief

.

1.9. MapWindow 4 Conversion Tips

In this section, we assume that you might be a developer with some pre-existing experience

with MapWindow 4. Because the underlying object libraries are very different, it might be

confusing for a MapWindow 4 developer to get started working with the objects in MapWindow

6. The most challenging ideas involve the introduction of inheritance and extensible interfaces.

) ICloneable

IComparable<Coordinate>
IComparable

| Coordinate 2
Class

= Fields

¢ M

4 X

4y

4z
= Properties

ey Empty
B NumOrdinates
= Methods
Clone
CompareTo
Distance
Equals2D
Tohrray

LR SR Sl Sl S ¢

ToString

O IEnvel ope

| Envelope
Class

=l Properties
% Height
= Ishull
= Maximum
2 Minimurn
B Width
= ox
=y
=l Methods
Clone
Copy
Intersects (+ 1 overload)
SetToMull
% ToString

v
v
.
W

= Events

¥ ErwelopeChanged

»

1.9.1. Point

m MapWinGIS.Point }

The Point class was formerly a class that provided rapid access to X, Y and Z values.

This class has been replaced by the Coordinate class. A Point, as defined by the OGC
Simple Feature Specification, has geometry methods like Intersects, and is
independently available in MapWindow 6, but has many more capabilities that just
storing a coordinate location. Therefore, the coordinate class has taken over as the
class to use.

1.9.2. Extents

m MapWinGIS.Extents]

The Extents class in MapWindow 4 was a bounding box that defined a two or three

dimensional region. The new class introduces a Minimum and a Maximum
coordinate, which has the X, Y and Z values for the lower and upper bounds in each
case. This also provides accessors for controlling the X, Y, Height and Width
properties, which are calculated from the Minimum and Maximum coordinates.

80 of 85

1.9.3. Shape

i IFeature
!-Feature &)
‘m . Class: J MapWinGIS.Shape J
=l Properties
=3 BasicGeometry
ﬁq‘ Coordinates
B DataRow The Shape class in MapWindow 4 was a generic feature and provided
g Envelope basic access to the coordinates, and gave the geographic extents for that shape.
2 FeatureTy
= FIES e In the old model, the only connectivity between a shape and the attributes was
ZF NumGeometries that they would both have the same index. In the new version, a Feature has a
Bf ParentFeatureSet - .
S Mt adren = DataRow, which provides direct access to the attributes specific to this feature. It
oas
@ Copy also has the Envelope, which describes the bounds, and you can directly access
¥ CopyAttributes the coordinates. Because some features are complex, like multi-polygons, the
ExportToGML , . .
: c per e BasicGeometry is provided, which organizes the coordinates according to the OGC
eature [+ 3 overloads)
W GetBasicGeometryN definitions like Polygons, LineStrings, or Points.
% ToBinary
% UpdateEnvelope

81 of 85

) IDataSet

1.9.4. Shapefile

) IFeatureSet

| DataSet
Class

+ Fields

= Properties

B Name
2 Projection

= SpaceTimeSup..

iy TypeMame
= Methods

W Close

| FeatureSet
Class
r - DataSet

>

= Properties
CoordinateType
DataTable
Envelope
FeatureLockup
Features
FeatureType
Filename
ProgressHandler
Shapelndices

= Vertices

27 VerticesAreValid
= Methods

AddFeature

CopyFeatures

CopySubset [+ 1 overload)
CopyTableSchema (+ 1 overload)

FeatureFromRow
FillAttributes [+ 1 overload)
Find
InitializeVertices
InvalidateEnvelope
InvalidateVertices
Open [+ 1 overload)
Reproject

Save

Saveds

Select (+ 1 overload)
SelectByAttribute
UpdateEnvelopes

L S SO SNE SO SR SN SR SR CHE SR SO SR SNE S ¢

<

=l Events
FeatureAdded
FeatureRemoved
VerticesInvalidated

»|

m MapWinGlIS.Shapefile

In MapWindow 4, there was an assumption that there was

only going to ever be one supported vector format, and
that format was the shapefile. In MapWindow 6.0, the
introduction of extensible data providers implies that
many different data sources will be possible. Therefore,
the name FeatureSet seemed more appropriate.
FeatureSet classes contain accessors to the Envelope, a
DataTable of attributes, as well as a cached array of
vertices. The Shapelndices class is a special shortcut to
allow for effective use of the vertices class, and is
currently being used to speed-up rendering operations. A
Reproject method is also available on the FeatureSet,
which will change the in-memory coordinates without
changing the original file.

Regardless of whether you are working with an image,
raster, or featureSet, they derive from the same basic
class, called a DataSet. The DataSet provides simple
information like the Name, and Projection information
that are shared across formats. Selection is supported
here, but it should be understood that there is a
disconnect between the featureset and the layer being
drawn. Layers control how a particular DataSet is
symbolized and drawn in the map. However, the ability to

discover the features that are within an envelope, or else that have attributes that match an SQL

query is supported and used at the level of the FeatureSet.

The FeatureSet is interesting because it acts as both a base class, meaning that a

PolygonShapefile ultimately inherits from FeatureSet, but it also acts as a wrapper class. In

other words, when the user programmatically creates a new FeatureSet, there is no way to

know what kinds of classes will be necessary in order to access the data on a file, or possibly a

database or web service. Therefore, we provide the FeatureSet as a kind of wrapper for an

internal IFeatureSet. When the Open method is called, internally, the FeatureSet class requests

a new IFeatureSet from the default DataManager. Any requests for features or other properties

are simply passed to the internal featureset.

82 of 85

) Raster

| Raster
Class
=+ DataSet

* Fields

=l Properties

Bands
Bounds
ByteSize
CellHeight
CellWidth
CurrentBand
CustomFileType
DataType
DriverCode
EndColumn
EndRow
Filename
FileType
IsInRam
LineSpace
Maximum
Mean
Minirmum
MoDataValue
MNotes
MumBands
MNumCelumns

MumPRows
MumRowsInFile
MNumValueCells
Opticns
PixelSpace
ProgressHandler
Rows
StartColumn
StartRow
StdDeviaticn

fl:' Kllcenter
fl:' Yllcenter
= Methods

Create
CreateMew
GetGridFileType
GetStatistics

Save

LK SR CBE B SN CE SR 4

MumCclumnslnFile

Copy (+ 1 overload)

Open [+ 1 overlcad)

Saveds [+ 2 overloads)

¥

1.9.5. Grid

Class: J

The grid class was a wrapper class that could internally represent an integer,

MapWinGIS.Grid]

float, short, or even double grid. The main goal of the grid class was to be able to
cycle through the rows and columns of a raster data file and get or set the various
numeric values.

The new representation is called a Raster. Unlike the MapWindow Grid, Rasters
can have multiple bands, with each band also being a Raster. The vast set of
properties to the left may seem intimidating, but realistically, there are only a few
properties that are critical. The first is the “Value” property. This is where the
actual values are stored. To access the value on row 7 and column 6, you would
simply access double val = myRaster.Value[7, 6]. Regardless of what the source
data is stored as, the value accessed here will be converted into double values.
This makes it easier to write code, because you don’t have to handle each of the
separate possibilities independently.

The other critical values are NumRows and NumColumns. These are necessary so
that you know how to cycle through the values form the Value property. The
final bit of information that is especially important is the Bounds property. Many
of the properties to the left are actually just shortcut accessors to the
RasterBounds property. This is where the information is kept that stores the
geospatial part of the raster content. With the Bounds property, you can control
the position of a raster in space. The NoDataValue is also useful, as it can help
change how statistics are calculated.

83 of 85

) RasterBounds

| RasterBounds
Class

=l Properties
fl} AffineCoefficients

i i i

=

CellHeight
CellWidth
Envelope
Height
MumColumns
MumPRows
Width
WorldFile

X

¥

ethods

|

Copy
Open

< & 4

W Save

= Events

BoundsChanged

@ OmageData

RasterBounds [+ 3 overloads)

1.9.6. GridHeader

Class: ’

MapWinGIS.GridHeader)

The Header was an important part of the grid. It defined the spatial
locations like the lower left X and lower left Y coordinates as well as defining a
cell size. One of the limitations of the MapWindow 4 grids was that they did
not support skew terms. In MapWindow 6.0, the skew is fully supported and

uses AffineCoefficients as the source of most of the other properties.

However, in order to define the boundaries themselves, it is not enough to

simply have the affine coefficients, which effectively describe the cell size and

skew relationships as well as the position of the upper left cell. You also need

the number of rows and columns in order to get a valid rectangle that can

enclose the entire raster. The Envelope is a rectangular form that completely

contains the raster.

[ImageData

Class

—+ DataSet

=

Bounds
BytesPerPixel
Filename
Height
NumBands

WorldFile

= Methods

L L OO0 OO A

CopyValues

CreateMew

Dispose

GetBitmap (+ 1 overload)
GetColor

ImageData [+ 1 overload)
Cpen (+ 1 overload)
ReadBytes

Save

Saveds

SetColor

WriteBytes

| WorldFile

Class

=
=

CellHeight
CellWidth
DialogFilter
Filename
HarizontalSkew
Toplefty
Toplefty
VerticalSkew

=l Methods

L BRSO N S SN S ¢

GenerateFilename
GetExtension

Open [+ 1 overload)
Save

Savels

Tolatrix

WorldFile [+ 1 overload)

=

r Class: J

1.9.7. Image

MapWinGIS.Image

The Image class was specifically designed for working
with images, and was not really designed for data
analysis. The new ImageData class supports a “Values”
method similar to the values of a raster, but is actually an
array of byte values. The format of the image will change
The Stride
property is the number of bytes in a given row. This is

how those byte values are organized.

not always strictly related to the number of columns as
some image formats use algorithms that may require
The
BytesPerPixel gives an idea of whether you are working
with a GrayValue, RGB or ARGB image. With images, the
is controlled via a

slightly more columns than have actual data.

geospatial location and sizing

WorldFile.

84 of 85

1.10.

FFIII I I LI IELOLS

FeatureEM
Static Class

.______________________-_______________\
SR RIS I I I I I I I IS

= Methods

CellToProj (+ 1 overload)
CreateHillShade [+ 1 overload)
DrawToBitmap (+ 1 overload)
GetMearestValue [+ 1 overload)
GetRandomValues
GetUnigqueWalues (+ 1 overload)
IsFullyWindowed

MoveTe
PaintColorSchemeToBitmap
ProjToCell (+ 1 overload)
Rotate

Rotatedt

Scale

SetMearestValue [+ 1 overload)
Shear

Translate

= Methods

Area

Buffer [+ 1 overload)

Centreid

Contains (+ 1 overload)
ConvexHull (+ 1 overload)
CoveredBy [+ 1 overload)
Covers [+ 1 overload)

Crosses [+ 1 overload)
Difference [+ 2 overloads)
Disjeint (+ 1 overload)
Distance [+ 1 overload)
Intersection [+ 2 overloads)
Intersects [+ 2 overloads)
IsWithinDistance [+ 1 overload)
Cverlaps (+ 1 overload)

Relates [+ 1 overload)
SymmetricDifference (+ 2 overloads)
Touches (+ 1 overload)

Union [+ 2 overloads)

Within (+ 1 overload)

Extension Methods

Extensions Rasters

Not all of the methods are supported directly on a raster. Many useful
methods are actually supported in the form of “Extension Methods”. For the
raster, this includes useful methods that can alter the raster bounds, like
But other useful abilities like CreateHillShade
actually use the raster values themselves in order to calculate a floating point

Translate, or Scale, or Rotate.

value that helps to control the shaded relief aspect of any image that is created
from a raster. Other methods like GetRandomValues, and GetNearestValue are
helpful for doing analysis, but one of the most critical methods is CellToProj
and ProjToCell, which allows the developer to easily go back and forth between
geospatial coordinates and the row and column indicies.

Extensions Feature

The Feature, and in fact any class that implements the IFeature interface will be
extended with the geometry methods that are so critical to vector calculations.
These not only include the overlay operations like Intersection, Union and
SymmetricDifference, but all the tests that you might want to use like touches
or within. Some of the bonus methods are methods like Area, which calculates
the areas of polygons. Another is Centroid, which calculates the center of mass
for geometries. ConvexHull can be used to simplify a geometry in the same way
that you would simplify something by wrapping it with an elastic band. It draws
straight lines past concave sections, and follows around with the convex
portions. The Distance tool finds the minimum distance between two
geometries, and the IsWithinDistance simply changes the Distance calculation

to test it against a threshold.

85 of 85

