

Developer’s Corner

May 2015

Table of Contents
1. Developer’s Corner .. 3

1.1 Geometry Cheat Sheet ... 4

1.1.1 Overlay Operations: .. 8

1.2 Exercise 1: Assemble a Map Project ... 10

1.2.1 Step 1: Start a New C# Application ... 10

1.2.2 Step 2: Add DotSpatial Components ... 11

1.2.3 Step 3: Set up interface for plugin Menu .. 14

1.2.4 Step 4: Adding the Map and other Controls ... 20

1.2.5 Step 5: Add the Legend and Toolbox .. 22

1.2.6. Step 6: Link It All Together ... 24

1.3 Exercise 2: Simplify Australia Data Layers ... 26

1.3.1 Step 1: Download Data ... 26

1.3.2 Step 2: Calculate Polygon Areas .. 27

1.3.3. Step 3: Compute Centroids .. 31

1.3.4 Step 4: Sub‐sample by Attributes ... 32

1.3.5 Step 5: Export Layer to a File .. 34

1.3.6 Step 6: Repeat with Highway Linear Referencing System Routes 34

1.3.7 Step 7: Applying Labels ... 36

1.4. Programmatic Point Symbology .. 38

1.4.1 Add a Point Layer .. 38

1.4.2 Simple Symbols ... 41

1.4.3 Character Symbols .. 43

1.4.4 Image Symbols .. 46

1.4.5 Point Categories .. 51

1.4.6 Compound Symbols .. 55

1.5 Programmatic Line Symbology ... 57

1.5.1 Adding Line Layers .. 57

1.5.2. Simple Line symbols ... 57

1.5.3. Outlined Symbols ... 58

1.5.4 Unique Values ... 59

1.5.5 Custom Categories .. 60

1.5.6 Compound Lines ... 61

1.5.7. Line Decorations .. 64

1.6 Programmatic Polygon Symbology ... 65

1.6.1 Add Polygon Layers ... 65

1.6.2. Simple Patterns .. 66

1.6.3. Gradients .. 66

1.6.4. Individual Gradients ... 67

1.6.5 Multi‐Colored Gradient ... 68

1.6.6. Custom Polygon Categories ... 69

1.6.7 Compound Patterns .. 70

1.7 Programmatic Labels .. 72

1.7.1 Field Name Expressions .. 72

1.7.2 Multi‐Line Labels ... 73

1.7.3. Translucent Labels ... 74

1.8. Programmatic Raster Symbology .. 75

1.8.1 Download Data ... 75

1.8.2. Add a Raster Layer ... 76

1.8.3 Control Category Range .. 78

1.8.4. Shaded Relief ... 79

1.8.5. Predefined Schemes .. 80

1.8.6 Edit Raster Values ... 81

1.8.7. Quantile Breaks .. 82

1.9. Extension Methods ... 84

1.10 Adding Additional Plugins and Extensions ... 86

1.10.1 GDAL.. 86

1.10.2. New Ribbon .. 95

2. Acknowledgements .. 98

1. Developer’s Corner
This section gives a bit of an overview of geometric relationships, which are important for
understanding some of the vector analysis options, and then gives some workable exercises to
demonstrate the current capabilities of DotSpatial 1.7. This should be thought of as a kind of
developer’s preview. This part of the document covers using DotSpatial components, stitching together
a working GIS by dragging the important components from the toolbox in Visual Studio, and then
gives a detailed description of how to programmatically add layers and work with symbology or

complex symbolic schemes.

A huge focus for the .Net version of DotSpatial is to put much more control into the hands of
developers. By providing everything in the form of .Net components, it makes it far simpler to pick and
choose what sections of the framework you want to work with. If the map is all you need, you don’t
need to bother adding the legend, our custom status strip, or the toolstrip. However, those
components are provided for you so that it you can stitch together a working GIS with minimal writing
of code.

1.1 Geometry Cheat Sheet
In addition to organizing coordinates for drawing, the geometry classes provide a basic framework
for testing topological relationships. These are spatial relationships that are principally concerned
with testing how to shapes come together, for instance whether two shapes intersect, overlap, or
simply touch. These relationships will not change even if the space is subjected to continuous
deformations. Examples include stretching or warping, but not tearing or gluing.

The tests to compare two separate features look at the interior, boundary, and exterior of both
features that are being compared. The various combinations form a matrix illustrated in the figure
below. It should be apparent that not only are the intersections possible, but each region will have a
different dimensionality. A point is represented as a 0 dimensional object, a line by 1 dimension and
an area by 2. If the test is not specific to what dimension, it can represent any dimension as “True”.
Likewise, if it is required that the set is empty, then “False” is used.

 Interior Boundary Exterior

Interior

Boundary

Exterior

Figure 1: Intersection Matrix

Graphically, we are illustrating the intersection matrix for two polygons. Some tests can be

represented by a single such matrix, or a single test. Others require a combination of several tests in
order to fully evaluate the relationship. When the matrix is represented in string form, the values are
simply listed in sequence as you would read the values from the top left row, through the top row
and then repeating for the middle and bottom rows. The following are all possible values in the matrix:

• T: Value must be “true” – non empty – but supports any dimensions >= 0

• F: Value must be “false” – empty – dimensions < 0

• *: Don’t care what the value is

• 0: Exactly zero dimensions

• 1: Exactly 1 dimension

• 2: Exactly 2 dimensions

The following is a visual representation of the test or tests required in each case. A red X
indicates that the test in those boundaries must be false. A colored value requires that the test be
true, but doesn’t specify a dimension. A gray value indicates that the test doesn’t care about the value
of that cell.

• Contains:

o Every point of the other geometry is a point of this geometry, and the
interiors of the two geometries have at least one point in common.

o T*****FF*

o
• Covered By:

o Every point of this geometry is a point of the other geometry.

o T*F**F***, *TF**F***, **T*F*** or **F*TF***

o

 I B E
I
B
E

 I B E
I
B
E

 I B E
I
B
E

 I B E
I
B
E

 I B E
I
B
E

• Covers:

o Every point of the other geometry is a point of this geometry.

o T*****FF* or *T****FF* or ****T*FF*

o

• Crosses:

o Geometries have some but not all interior points in common.

o T*T***** (for Point/Line, Point/Area, Line/Area)

o

o T*****T** (for Line/Point, Line/Area, Area/Line)

o

o 0******** (for Line/Line Situations)

o

• Disjoint:

o The two geometries have no point in common.

o FF*FF****

 I B E
I
B
E

 I B E
I
B
E

 I B E
I
B
E

 I B E
I
B
E

 I B E
I
B
E

 I B E
I
B
E

0

 I B E
I
B
E

o

• Intersects: NOT Disjoint

o The two geometries have at least one point in common.

• Overlaps:

o The geometries have some but not all points in common, they have the same
dimension, and the intersection of the interiors of the two geometries has
the same dimension as the geometries themselves.

o T*T***T** (for Point/Point or Area/Area)

o

o 1*T***T** (for Line/Line)

o
• Touches:

o The two geometries have at least one point in common but their

interiors do not intersect.

o FT*******, F**T*****, or F***T****

o , , or

• Within:

o Every point of this geometry is a point of the other geometry and the
interiors of the two geometries have at least one point in common.

o T*F**F***

 I B E
I
B
E

 I B E
I
B
E

1

 I B E
I
B
E

 I B E
I
B
E

 I B E
I
B
E

 I B E
I
B
E

1.1.1 Overlay Operations:

Being able to test the existing relationships between geometries is extremely useful for doing
analysis, but many times you need to alter the geometries themselves. Frequently you want to use
other geometries to accomplish this. Consider the case of a clipping operation. In the figure below, the
rivers extend beyond the boundaries of the state of Texas. Using an overlay operation is exactly the kind
of operation that helps with this kind of calculation. These are not limited to specific scenarios like
polygon to polygon. Instead the same terminology applies to all the geometries using the following
definitions.

Figure 2: Before and After Clipping Rivers to Texas

• Difference:

o Computes a Geometry representing the points making up this geometry that
do not make up the other geometry.

o

• Intersection:

o Computes a geometry representing the points shared by this geometry and
the other geometry.

o
• Symetric Difference:

o Computes a geometry representing the points in this geometry that are not

present in the other geometry, and the points in the other geometry that are
not in this geometry.

o
• Union:

o Computes a geometry representing all the points in this geometry and the

other geometry.

o

 1.2 Exercise 1: Assemble a Map Project

Putting together a GIS project has never been easier. Even a novice developer can take advantage of
our ready‐built mapping controls, dragging and dropping them onto a solution. Because the
components are largely independent, they can be re‐arranged in different layouts, or used separately.
Furthermore, the extensive use of interfaces for the controls allows a control like the map control
to be used interchangeably with alternate controls that act like a legend.

In this first exercise, we will take the assembly step by step. If you have never worked with anything
besides the built in .Net controls, this exercise will be useful because it will demonstrate how to add
the DotSpatial components to your Visual Studio developer toolbox. It will also show the basic way
that the most fundamental map controls can be added to the map.

1.2.1 Step 1: Start a New C# Application

The first step of the exercise is to create a brand new application. Rather than working with an
existing application, the goal here is to show that getting from a blank project to a fully operational GIS
takes only a few minutes in order to add the components and link them together. To get to new
project dialog in Visual Studio, simply navigate to File, New, and choose Project from the context
menu. This will display the New Project dialog displayed in figure 3.

Figure 3: New Project Dial

Change the name and path to something appropriate. In this case, we chose “Build_A_Map” and
C:\Users\Matt\documents\DotSpatialDev\Tutorial\Components\Ex1 is the file path. Make sure that
the Project type is Visual C# and Windows. Ensure that the Template is set to “Windows Forms
Application.” Then click OK.

1.2.2 Step 2: Add DotSpatial Components

The first step in any project is to ensure that you have loaded all of the designer controls and
components into the DotSpatial toolbar. First, we want to create a new tab to store the DotSpatial
tools. You can do this by right clicking on the toolbox and selecting the Add Tab option from the
context menu.

Figure 4: Add DotSpatial Tab

This will allow you to edit the name of the tab. We will name the tab “DotSpatial” so that we can
easily keep the controls from the DotSpatial library together. Once you have added a DotSpatial tab,
you will want to right click in the blank space below that tab and select “Choose Items” from the
context menu.

Figure 5: Choose Items

The choose items option launches a new dialog which will allow you to select from various pre‐ loaded
.Net controls as well as some COM controls. However, we are going to use a third option, and
browse for the DotSpatial.Controls.dll file.

Figure 6: Browse

This, in turn, launches a file browser, and you will have to navigate to where the
DotSpatial.Controls.dll file is found on your local machine. On this machine it was in the
C:\Users\Matt\Documents\DotSpatialDev\DotSpatial.

Figure 7: Select DotSpatial.dll

 Figure 8: DotSpatial Tools

Once you have chosen this document, it will cause a large number of tools to be added to your
toolbox, as is illustrated in the figure to the right.

1.2.3 Step 3: Set up interface for plugin Menu
Next we will add a plugin for a menu, which includes several basic GIS functions like adding data
layers, switching between zoom and pan mode, and zooming to the full extent. This is not the same as
the “SpatialToolStrip.” This will likely be removed in future versions of DotSpatial. We first need to
reference more of the DotSpatial Library as well as an additional .net framework in order to support
the plugin. The plugin comes with the DotSpatial download so we will not need to download anything
extra but we will need to add some code in order to access it.

In the solution explorer under the project name is a menu option called “References.” If you click to
open the menu you should see “DotSpatial.Controls” has already been added from our work in the
previous steps. We now need to add more of the DotSpatial library. Right click on “References” and
select “Add References.”

Figure 9: Adding a Reference

A new window will appear. Scroll down to “System.ComponentModel.Composition” and check the box
next to it.

Figure 10: Adding an Assembly

Next go to the “Browse” menu option and click on the “Browse Button.”

Figure 11: Browsing to Add DLLs

This, in turn, launches a file browser, and you will have to navigate to wherever the DotSpatial dlls
are located on your local machine. On this machine it was in the
C:\Users\Matt\Documents\DotSpatialDev\DotSpatial. Add all the files except for the
“DotSpatial.Controls.dll” since that one has already been added to the project.

Figure 12: Adding additional DotSpatial dlls

 Figure 13: Checking dll status

Figure 14: DotSpatial dlls

Your references menu should now look like Figure 14. The next step is to add the AppManger from the
DotSpatial tools. This will allow the project to manage the various tools we are going to add to it. Drag
and drop the AppManger onto the form and it will appear below the form.

Figure 15: Adding the AppManger

For simplicity we will keep the default names for each of the tools but they should be renamed to avoid
confusion and provide meaning in your applications. The next step involves adding code so that our
project can add plugins and creating a shell so we can add in the tool strip.

Figure 16: Accessing the Code

Figure 17: Code Main Page

Your screen should like similar to Figure 17. We will now add code to this page in order to have access to
the tool bar plugin. At the top of the page are various “using” statements. These are files outside the
main project that the program has access to. We will need to add some code to let the program use the
assembly that we added earlier.

Figure 18: Code Main Page

After the last “using” statement, type:

using System.ComponentModel.Composition;

Figure 19: Code Main Page

After the “public class From1 : From” and the
“{“ type:

[Export("Shell",typeof(ContainerControl))]
private static ContainerControl Shell;

Figure 20: Code Main Page

After “InitializeComponent();” type:

if (DesignMode) return;
Shell = this;
appManager1.LoadExtensions();

The menu bar will not appear until the project has been compiled, but we can still add features to our
map because the program will automatically put the menu bar at the very top of the form.

1.2.4 Step 4: Adding the Map and other Controls

Now that the menu plugin has been added, we can start adding more DotSpatial controls. In order to
cleanly divide up the screen area with a minimum of custom programming, we will take advantage of
the DotSpatial “SpatialDockManager” control. This will divide the content into two separate panels that
are sizeable by the user.

Figure 21: SpatialDockManager

On the left side on “Panel 1” we are going to add a Tab Control which will help us manage the legend
and DotSpatial Tools. The tab control is under “All Windows Forms” on the Toolbox. Set the dock to fill.

Figure 22: TabControl

 Once the separate panels exist, we can add the map to the project. When adding the map, it will likely
be the wrong size for the panel that we created. In order to allow the user to resize the map so that it
always is the right size for the panel, change the “Dock” property to “Fill”. This can be done by choosing
the central rectangle in the drop down editor that appears in the property grid when you click on the
down arrow.

Figure 23: Add a Map

1.2.5 Step 5: Add the Legend and Toolbox

Because the Legend and Toolbox can both exist in support of the map, and it is not critical to have
both of these tools visible at the same time, for this project we will take advantage of the
.Net Tab control to help re‐use the same space more effectively. Because these components are
interchangeable, the Tab control is not necessary, and second split panel, fixed panels, or even third
party docking panels are all acceptable alternatives that will not affect the proper behavior of the map,
legend or toolbox.

To add a legend, drag and drop the DotSpatial Legend onto the first tab and set the dock to fill.

Figure 24: Add a Legend

In this instance we changed the text on the first tab to read Legend. This can be done through the
property grid that appears when you activate the tab control by clicking on it after it has been added to
the main form.

The toolbox has been designed with basic map analysis tools and has been designed to function as a
plugin. In order to have the tools be usable on the form we are going to need to add the “Tools” folder
from the DotSpatial folder to our project’s Plugin folder which we will create next.

We will need to create a folder named “Plugins” in bin/Debug folder. The file path on this computer was
C:\Users\Matt\Documents\DotSpatialDev\Tutorial\Components\Ex1\Build_A_Map\Build_A_Map\bin\D
ebug

Figure 25: Create a Plugins Folder

Next locate the “Tools” folder in the DotSpatial folder that you downloaded earlier. This is the same
folder that has the DotSpatial dlls. Copy this folder and place it inside the Plugins folder.

Figure 26: Create a Plugins Folder

Now that we have the “Tools” folder in the “Plugins” folder we now have the basic controls and tools for
a map. Once we finish linking the controls together a “Tools” tab will be added next to the “Legend” tab.
Therefore we can delete the second tab as we will not need it. The only thing now is to connect each of
the controls together.

1.2.6. Step 6: Link It All Together

We could technically run the project right away, but it would not appear to do anything. The add data
button, for instance might happily open a file dialog, but nothing would happen when it was finished. In
order for the legend to show the layers from the map, we need to link things together. We need to
change the settings on two controls: the AppManger and the Map.

Figure 27: Linking the AppManger

In order to link the
AppManger change the
settings on the DockManger,
Legend, and the Map (found
under the Misc. menu) to the
names you gave them. If you
have not changed the names
then the defaults are shown
in Figure 27.

Figure 28: Linking the Map

Next we need to link the
Map. There is only one
setting we need to change,
which is the legend. Change
that setting to the name of
you legend and your legend
should now display an icon
which reads “Map Layers.”

Now that our project is connected, the first thing to do is to get some sample data. For our project,
almost any data in shapefile format will do, but in the spirit of improving online data awareness, this
book features many online data sources that should provide up‐to‐date GIS data. As example we will
use a shapefile from the U.S. Cenus, which can be found among other files here http://www.census.gov

The raw data in this case is stored in the form of a zip file. Most modern operating systems can unzip
files automatically, but in the event that you need an unzip utility, a free, open source utility called 7‐zip
is available for download from http://www.7‐zip.org. Once you have downloaded and extracted the
shapefiles, you will see a .shp, a .shx and a .dbf file all with the same name before the extension. This is
the basic file format known as an ESRI shapefile, and is a commonly used format for GIS analysis because
it is portable and has an open standard and so is widely compatible between different GIS software
vendors.

The figure above illustrates the view of the continental United States. Because the data also includes
counties in Hawaii, Alaska and Puerto Rico, it will be necessary to zoom in a little to see a view like the
one above. You can also use the mouse wheel to zoom in or out of the scene and click on the “hand”
icon to pan. We will next look at some of the features of DotSpatial.

? Help Tip
Sometimes links can become broken or out of date.
In cases like this, it is often useful to look at the first

part of the address and then search for data
manually. Example: instead of

https://www.census.gov/geo/maps‐
data/data/cbf/cbf_state.html

you could use
http://www.census.gov

http://www.census.gov/
http://www.census.gov/

Figure 29: Map of the United States

1.3 Exercise 2: Simplify Australia Data Layers

1.3.1 Step 1: Download Data
For this exercise, we need some thematic vector layers that represent more than just polygons. For this
project we will use shapfiles from the Utah Automated Geographic Reference Center. Producing high
quality maps for the State of Utah, the Reference Center has been active for over 30 years. Access to
these maps is free and they can be found at:

http://gis.utah.gov/

For this exercise, we downloaded the Municipal, County and State Boundaries; Lakes, Rivers, Streams, &
Springs; and the Highway Linear Referencing System Routes shapefiles. These files are stored in zip
format, so you will have to unzip them first (see exercise 1). Before we do any programmatic
symbolizing, we will want to convert the polygons from the municipalities’ shapefile to a set of points.
Fortunately DotSpatial has the tools necessary to do this operation.

Before we begin these exercises, however, we need to be able to access the attribute table. The
attribute table is a Plugin that comes in the DotSpatial download. To activate it, simply copy the
“DotSpatial.Plugins.TableEditor” from the downloaded DotSpatial folder to the Plugins folder we created
in the last exercise.

http://gis.utah.gov/

Figure 30: Adding the Attribute Table

Now that we have access to the attribute table we are ready to start modifying our shapefiles.

1.3.2 Step 2: Calculate Polygon Areas

Figure 31: Adding Data

After clicking the green plus to open a file dialog, browse for the “Utah.shp” and the
“Municipalities.shp” shapefiles you just downloaded and extracted. When they open, you should
see polygons that represent large city areas and the state of Utah, mostly at the center of Utah.
Since the polygons are small compared to the size of the entire state, we can see that the city regions
are in fact polygons by zooming into the central area.

Figure 32: Municipalities Polygons

We will eventually like to be able to distinguish the largest cities. We will use the area
calculation tool to calculate areas for each of the polygons. These values will be used to separate
the larger cities from the small ones. To see the toolbox, simply change the tab to the Toolbox
tab. While this shapefile already includes the areas of the municipalities, it is useful to go through
the process as an example of how to use the DotSpatial tools.

Figure 33: Calculate Area

A new window will open and have two user fields. The first field is the input feature set. In this case
it is our Municipalities shapefile. The next field is the resulting feature set. When the green plus is
clicked, it will open a new window allowing us to specify a storage location and a name for our new
shapefile. In this example we named our shapefile “Area of Municipalities.”

Figure 34: Making a new shapefile

Once we click save the program will calculate the areas of the municipalities and a warning window will
appear. Make sure to use the map’s coordinate system.

Figure 35: Coordinate System

The resulting shapefile has been added to the map as a new layer. If we open the attribute table we can
see that a new field has been added to the resulting shapefile that shows the area.

Figure 36: Newly Added Area

1.3.3. Step 3: Compute Centroids

Now that we have a way to order the cities by way of areas, we can now create a simple cities
layer from the existing polygons. We can do this by using the centroid tool.

Figure 37: Calculate Centroid

The same windows will appear for calculating centroids as for when we calculated the area. Follow the
same steps. The result should look something like Figure 38.

Figure 38: Too Many Cities

The shapefile created by calculating the centroids will now be a good representation of the city locations
for built up areas, and in addition, it will give us an approximate measure of the size of the built up area
using the area attribute.

1.3.4 Step 4: Sub‐sample by Attributes

As can be seen from the figure above, there are a few too many cities visible to make a good map.
We need to build a cities shapefile with just the largest cities. We can use the select by attributes
ability, and in this case choose [Area] > 1e+08 as the criteria, in order to select Utah’s seven biggest
cities.

Figure 39: [Area] > 1e+08

We will rename the “Centroids” layer to “Cities.” In order to create a new layer with the features we
have selected, we can right click on the cities layer in the legend. By highlighting the “Selection” tab in
the context menu, we gain the ability to create a layer from the selected features. This will create a
new in‐memory shapefile that is not yet associated with a true data layer.

Figure 40: Create a Layer

1.3.5 Step 5: Export Layer to a File

Now that we have created this new layer we need to export it in order to save it as an actual shapefile.

Figure 41: Export Layer

Exporting the layer will save this newly created city layer with just the cities with the largest
areas.

1.3.6 Step 6: Repeat with Highway Linear Referencing System Routes

We will limit the size of this shapefile as well. There are a variety of ways to limit the shapefile’s size
but in this example we will use length. This shape file contains not only the highways but the exit
ramps and other short roads that we do not want in our project. To simply our project we will only
keep roads greater than 1000 meters.

Figure 42: Primary Roads

Make a new layer using the data and export the file. Selecting by attributes is not the only way to
narrow down the features that you want to use. First, make sure that the layer you want to interact with
is selected in the legend. This will prevent content from other layers from being selected at the same
time. Next you can activate the selection tool by using the button in the toolstrip indicated in the figure
below. Holding down the [Shift] or [Ctrl] keys allows you to select multiple layers at one time. Once you
have selected the major polygons, create a new layer the same way by using the create layer from
selection option in the legend.

Figure 43: Selection Tool

1.3.7 Step 7: Applying Labels
Add the counties shapefile to the map. In order to finish our map exercise we will add labels to our map
for each county.

Figure 44: Label Setup

Figure 45: Feature Labeler

Figure 46: Applied Labels

This is the end of the basic map tutorial. If you have more questions feel free to check the “Discussions”

tab on http://dotspatial.codeplex.com/discussions.

1.4. Programmatic Point Symbology
Unlike the previous section, where we were assuming that the reader would perform each step, in this
section, we will explore the most basic features of the extremely powerful symbology toolkit
provided by DotSpatial, but listed under completely independent objectives. These are subdivided into
5 basic categories: Points, Lines, Polygons, Labels, and Rasters. A comprehensive set of cascading
forms launched from the Legend provide a built in system so that users can get started editing
symbology right away using the built in components. However, this section is not about mastering
the buttons on the dialogs. Rather, this section makes the assumption that you are either writing a
plug‐in, or else are building your own GIS software using our components. In such a case, you might
want to be able to automatically add certain datasets, and control the symbology automatically, behind
the scenes.

In previous versions of DotSpatial, setting the color of the seventh point in the shapefile to red was
extremely simple, but the trade‐off was that anything more complex was not inherently supported in
the base program. Instead, developers would have to write their own code to make symbolize the
layer based on attributes. DotSpatial introduces thematic symbol classes that on the surface appear
to be much more complicated. However, we will show that accessors have been provided to still allow
easy access to the simplest steps, but also provide a basic structure that makes symbolizing by attributes
much simpler than in previous versions.

To begin this exercise, we will need the datasets created as part of exercise 2. We will also be working
with a copy of the Visual Studio project that we created in exercise 1, to hammer in the point that you
do not need to be working with the DotSpatial executable, but rather can be working directly with the
components in a new project. The first step is to explore adding data to the map programmatically.

1.4.1 Add a Point Layer

using DotSpatial.Data;

IFeatureSet fs = FeatureSet.Open(@"[YourFolder]\DotSpatialDev\shapefiles\Centroids of
Municipalities\Centroids.shp");

IMapFeatureLayer mylayer = map1.Layers.Add(fs);

The three lines of code above are all that is needed to programmtically add the cities with centroids
shapefile to the map. The first line allows us to use the DotSpatial data library which includes the
IFeatureSet. The second line creates an external FeatureSet class. This is useful for opening and working
with shapefiles. It also creates an external FeatureSet class and reads the content from the vector
portion of the shapefile into memory. The @ symbol tells C# that the line should be read literally, and
won’t use the \ character as an escape sequence. You can substitute [YourFolder] with the folder
containing these exercises on your computer. Finally, the last line adds the data to the map and creates
a map feature layer named “mylayer” which we will use in the next section.

Objective: Add A Point Layer To The Map

http://dotspatial.codeplex.com/discussions.

Figure 47: Adding a Shapefile

We can add the lines of code above in the main form by overriding the OnShown method. That way,
when the form is shown for the first time, it launches the map. The FeatureSet variable gives us access
to all the information stored directly in the shapefile, but organized into feature classes.

Figure 48: Feature Set and Features

The simplified class diagrams from above give an idea of what kinds of information you can find directly
on the FeatureSet class, or in one of the individual Features. The DataTable property returns a
standard .Net System.Data.DataTable, filled with all of the attribute information. This table is also used
by the SelectByAttribute expression. The Envelope is the geographic bounding box for the entire set of
features. The Features property is the list of features themselves. This is enumerable, so you can cycle
through the list and inspect each of the members. The FeatureType simply tells whether or not the
FeatureSet contains points, lines or polygons.

The other significant vector data class shown here is the Feature. The BasicGeometry class lists all of the
vertices, organized according to OGC geometric structures, such as Points, LineStrings, Polygons, and
MultiGeometries of the various types. Because we were interested in making extensible data
providers, we did not require these basic geometric classes to support all mathematical overlays and
related operations that can be found in the various topology suites. Instead, the role of the
BasicGeometry is to provide the data only interface.

We did not overlook the possibility of wanting to perform, say, an intersect operation with another
feature. Instead of building the method directly into the feature class, we have instead build
extension methods so that from a programmatic viewpoint, it will look like any IFeature will be able
to perform Intersection calculations.

Figure 49: Extension Method

Typing a period after a class in .Net will display an automatic list of options. Continuing to type
normally filters this list of options, so that you can very rapidly narrow the displayed items and reduce
the chance for spelling mistakes. It also gives you an instant browse window to explore the options on
a particular class. This auto‐completion tool is referred to as Microsoft Intellisense. The exact

appearance of this function will depend on the version of visual studio, as well as whether or not
you have any extensions like Re‐Sharper loaded. If XML comments have been generated for the
project, (which they have been for DotSpatial) you will not only see the methods, properties and
events available, but you will also see help for each of these methods that extends to the right.

Methods are identified by having a purple box. Extension methods are represented by a purple box
with a blue arrow to the right of that box. Instead of having the programming code built into the
class, the code is actually separate, in an external static method. Using this technology, it becomes
easy to associate a behavior like Intersects directly with the feature, but without every external
data provider having to rewrite the intersection code itself.

1.4.2 Simple Symbols

using DotSpatial.Symbology;
using DotSpatial.Controls;

private void MakeYellowStars(IMapFeatureLayer mylayer)
{

mylayer.Symbolizer = new PointSymbolizer(Color.Yellow, DotSpatial.Symbology.PointShape.Star, 16);
}

Figure 50: Yellow Stars Code

Because we know in advance that we are working with points, we don’t have to work directly with
the existing classes, or use casting. We can simply use the constructor. If we pass mylayer from the
earlier code into the method above, we will automatically create the outpoints shown in the following
image.

Objective: Make Yellow Stars

Figure 51: Yellow Stars

One thing that you might notice is that the borders of the stars are hard to see because we only
specified one color, and that color was the fill color. In order to give the stars black outlines, we need
to call a slightly different method.

mylayer.Symbolizer = new PointSymbolizer(Color.Yellow, PointShapes.Star, 16);
mylayer.Symbolizer.SetOutline(Color.Black, 1);

Figure 52: Yellow Stars with Outlines

You will notice that the layer does not control these characteristics directly. Instead, it uses a class
called a Symbolizer. Symbolizers contain all of the descriptive characteristics necessary to draw
something. They have a few simple accessors that allow us to work with the simple situations

like the one listed above. In this situation, we are not worried about a scheme, or complex
symbols that have multiple layers. A method like SetOutline may or may not work as expected in
every case, since some types of symbols do not even support outlines. However, if we inspect the
parameters that we can control above, we already have the basic symbology options that were
provided in previous versions of DotSpatial.

1.4.3 Character Symbols

In addition to the basic symbols, DotSpatial also provides access to using characters as a symbol. This
is a very powerful system since character glyphs are vectors, and therefore scalable. They look
good even when printing to a large region at high resolution. It is also incredibly versatile. Not only
can you use pre‐existing symbol fonts (like wingdings) that are on your computer, there are open
source fonts that provide GIS symbols. One helpful site that has lots of GIS symbol fonts that can be
downloaded for free is found here: http://www.mapsymbols.com. For this exercise, we are
downloading and unzipping the military true type fonts from the site. Downloading and unzipping the
file produces a file with the extension .ttf, which is a true type font. The next step is to find the
Fonts option in the Control Panel.

Figure 53: Fonts in the Control Panel

Clicking on this folder will open the folder showing all of the currently installed true type fonts. You will

Objective: Use Character Symbols

http://www.mapsymbols.com/symbols2.html.

need to copy and paste the new font into this folder and it will automatically install then new font for
you. In this case we are using the Military.ttf file.

Figure 54: Right Click to Paste New Font

We can verify that the new font is available directly by running DotSpatial 1.7, or our newly created
program, adding a point layer, and then symbolizing with character symbols. To use character
symbols, double click on the symbol in the legend. This will open the Point Symbolizer Dialog. There is
a Combo‐box named “Symbol Type” which enables the user to choose a new symbol type. In this
case, we want to choose Character.

Figure 55: Switch to Characters

Figure 56: Choose Military

Once you select military, the icons listed below in the character selection drop‐down should be
replaced with the new military symbols that we have just downloaded. Because many GIS

systems use true type fonts, it is possible for DotSpatial to show font types from pre‐created
professional font sets. Having verified that we have successfully enabled the software to use the new
military font type, we will now attempt to use one of these symbols programmatically. To draw planes,
we will choose the character M, which draws a character of a plane, and specify the use of the Military
font name. We can also specify that they will be blue and will have a point size of 16.

mylayer.Symbolizer = new PointSymbolizer('M', "Military", Color.Blue, 16);

Figure 57: Military Plane Characters

As a side note, the Military font is slightly abnormal in that it has a huge amount of white space at the
bottom of each glyph. Attempting to center the font vertically will cause problems because of all
the whitespace. As a result, an added line of code catches this possibility and uses the width for
centering instead. Since these symbols may not be exactly square, this may place the military symbols
slightly off center. However, more professionally created symbols will be centered correctly since
they will have a realistic height value that can be used for centering. It is also possible to create
custom glyphs for use as point symbols using various font editor software packages.

1.4.4 Image Symbols

Sometimes, it simply isn’t possible to work with fonts, however, and an image is preferable. In such a
case, you can use almost any kind of image. Remember that if you have lots of points, it is better to be
working with smaller images. As an example, you can download this wiki‐media tiger icon to work with:

http://commons.wikimedia.org/

Objective: Use Image Symbols

http://commons.wikimedia.org/

To use this symbol programmatically, first download the image to a file. Once you have saved the
image file, you reference it using either standard file loading methods for images, or else you can
embed the file as a resource to be used. We will look at embedding the image as a resource. First,
from solution explorer, add a resource file named Images.

Figure 58: Add a New Item

Figure 59: Images.resx Resource

Choose Resources File from the available Templates, then name the resource file Images, and click Add.
From the solution explorer, simply double click the newly added Images resource file to open it. Adding
it for the first time should automatically open the resource file as a tab. Under the Add Resource option
in the toolbar just below the Images.resx tab, choose “Add Existing File…”

Figure 60: Add an Existing File

Then simply browse to the file we just downloaded, and add it to the resource file. To make it easier
to find, we can rename the file “Tiger”.

Figure 61: Rename to Tiger

Now, we can programmatically reference this image any time using the Images.Tiger reference. Be
sure to build the project after adding the image to the resource file, or else the Intellisense will not
show the Tiger image yet. Adding the image to a resource file sets up the framework for the following
line of code where we will specify to use the Tiger image for the point symbology:

mylayer.Symbolizer = new PointSymbolizer(Images.Tiger, 48);

Figure 62: Tiger Images

1.4.5 Point Categories

For the next topic, we will introduce the concept of casting. In many cases, methods or
properties are shared between many different types of classes. When that is true, the interface may
provide the shared base class, instead of the class type that is actually being used. For instance, if
you are working with points, the Symbolizer that is being used should be a PointSymbolizer. This
has a shared base class with the FeatureSymbolizer.

Figure 63: Symbolizer Class Diagram

To illustrate inheritance, the class diagram above shows the three main feature symbolizers, one for
points, one for lines, and one for polygons. What is most important here is that there are some
characteristics that will be shared. Properties, methods and events on the FeatureSymbolizer class will
also appear on each of the specialized classes. Meanwhile, each individual type has a collection of
classes that actually do the drawing, but these classes are different depending on the class. In the same
way, we can set up categories, but it works much more easily if we know what kind of feature layer we
are working with. When working with categories, schemes, and so‐on, knowing that we are working
with a point layer is the difference between having to cast every single object every time, and only
having to cast the feature layer once.

We will be symbolizing based on the Area field. The areas were calculated from the polygons in exercise
2, so we can be assured that the cities with areas shapefile that we are adding has an Area field, and
looking at the table below, we can see that a reasonable cutoff for picking the largest cities might be

Objective: Use Point Symbol Categories

1e+08 meters.

Figure 64: Large Area Cities

The source code that we are going to use has several parts to it. First, we are going to cast the layer to
a MapPointLayer so that we know we are working with point data. After that, we create two separate
categories, using filter expressions to separate what is drawn by each category. Finally, we add the
new scheme as the layer’s symbology. When the map is drawn, it will automatically show the
different scheme types in the legend using whatever we specify here as the legend text.

IFeatureSet fs = FeatureSet.Open(@"C:\Users\Bayles\Documents\DotSpatialDev\shapefiles\Centroids of
Municipalities\Centroids.shp");
IMapFeatureLayer mylayer = map1.Layers.Add(fs);
IMapPointLayer myPointLayer = mylayer as IMapPointLayer;
if (myPointLayer == null) return;
PointScheme myScheme = new PointScheme();
myScheme.Categories.Clear();
PointCategory smallSize = new PointCategory(Color.Blue, DotSpatial.Symbology.PointShape.Rectangle,
 4);
smallSize.FilterExpression = "[Area] < 1e+08";
smallSize.LegendText = "Small Cities";
myScheme.AddCategory(smallSize);
PointCategory largeSize = new PointCategory(Color.Yellow, DotSpatial.Symbology.PointShape.Star, 16);
largeSize.FilterExpression = "[Area] >= 1e+08";
largeSize.LegendText = "Large Cities";
largeSize.Symbolizer.SetOutline(Color.Black, 1);
myScheme.AddCategory(largeSize);
myPointLayer.Symbology = myScheme;

Figure 65: Example Code

Figure 66: City Categories by Area

The square brackets in the filter expression are optional, but recommended to help clarify
fieldnames in the expression. What is significant here is that we did not have to write code to
actually loop through all of the city shapes, test the area attribute programmatically, and then assign
a symbol scheme based on the character. Instead, we simply allow the built in expression parsing to
take over and handle the drawing for us. This allows for programmers to work with the objects in a
way that directly mimics how users work with the symbology controls. And just like the layer dialog
controls allow you to specify schemes; those schemes can also be controlled programmatically.

IMapPointLayer myPointLayer = mylayer as IMapPointLayer;
if (myPointLayer == null) return;
PointScheme myScheme = new PointScheme();
myScheme.Categories.Clear();
myScheme.EditorSettings.ClassificationType = ClassificationType.Quantities;
myScheme.EditorSettings.IntervalMethod = IntervalMethod.Quantile;
myScheme.EditorSettings.IntervalSnapMethod = IntervalSnapMethod.Rounding;
myScheme.EditorSettings.IntervalRoundingDigits = 5;
myScheme.EditorSettings.TemplateSymbolizer =new PointSymbolizer(Color.Yellow,
 DotSpatial.Symbology.PointShape.Star, 16);
myScheme.EditorSettings.FieldName = "Area";
myScheme.CreateCategories(mylayer.DataSet.DataTable);
myPointLayer.Symbology = myScheme;

Figure 67: Example Code

This will be the last figure to include a snap shot of Visual Studio, as the implementation of each block of
code follows the same format.

Figure 68: Quantile Area Categories

There are a large number of settings that can be controlled directly using the PointScheme. In this

illustration the classification type is quantities, but this can also be UniqueValues or custom. The
categories can always be edited programmatically after they are created, but this simply controls what
will happen when the CreateCategories method is ultimately called. The interval snap methods include
none, rounding, significant figures, and snapping to the nearest value. These can help the appearance of
the categories in the legend, but it can also cause trouble. With Significant figures, the
IntervalRoundingDigits controls the number of significant figures instead. One property is deceptive in
its power. The TemplateSymbolizer property allows you to control the basic appearance of the
categories for any property that is not being controlled by either the size or color ramping. For example,
if we wanted to add black borders to the stars above, we would simply add that to the template
symbolizer. In this case we chose to make them appear as stars and controlled them to have equal sizes
since UseSizeRange defaults to false, but UseColorRange defaults to true.

Figure 69: Available Feature Editor Settings

The settings shown in the exercise above represent a small taste of the scheme options that are
programmatically available. You can also control the color range, whether or not the colors should be
ramped or randomly created, a normalization field, an exclusion expression to eliminate outliers and in
the case of polygons, a consistently applied gradient.

1.4.6 Compound Symbols

One of the new additions to how symbols work is that you are no longer restricted to representing
things using a single symbol. Complex symbols can be created, simply by adding symbols to the
Symbolizer.Symbols list. There are three basic kinds of symbols, Simple, Character and Image based.
These have some common characteristics, like the Angle, Offset and Size, which are stored on the
base class. In the derived classes, the characteristics that are specific to the sub‐class control those

Objective: Yellow stars in a Blue Circle

aspects of symbology. For creating new symbols, the Subclass can be used. For working with
individual symbols in the collection, you may need to test what type of symbol you are working with
before you will be able to control its properties.

Figure 70: Point Symbol Class Diagram

The class diagram above shows the organization of the individual symbols.

PointSymbolizer myPointSymbolizer = new PointSymbolizer(Color.Blue,DotSpatial.Symbology.PointShape.Ellipse, 16);
myPointSymbolizer.Symbols.Add(new SimpleSymbol(Color.Yellow,DotSpatial.Symbology.PointShape.Star, 10));
 mylayer.Symbolizer = myPointSymbolizer;

Figure 71: Blue Circles with Yellow Stars

1.5 Programmatic Line Symbology

1.5.1 Adding Line Layers

Line layers operate according to the same rules as points for the most part, except that instead of
individual symbols, we can have individual strokes. The default symbology is to have a single line layer
of a random color that is one pixel wide.

IFeatureSet fs = FeatureSet.Open(@"C:\[YourFolder]\DotSpatialDev\shapefiles\UDOTRoutes_LRS\

UDOTRoutes_LRS.shp");
IMapFeatureLayer mylayer = map1.Layers.Add(fs);

Figure 72: Add Line Layer

1.5.2. Simple Line symbols

private void BrownRoads(IMapFeatureLayer mylayer)
{

mylayer.Symbolizer = new LineSymbolizer(Color.Brown, 1);
}

Objective: Add Line Layer

Objective: Brown Roads

Figure 73: Brown Lines

1.5.3. Outlined Symbols

The line symbology is similar to the point symbology in that it also shares certain shortcut
methods like “SetOutline”. The distinction is that unlike the simple symbol, strokes cannot come
pre‐equipped with an outline. Instead, the appearance of an outline is created by making two passes
with two separate strokes. The first stroke is wider, and black. The second stroke is narrower and
yellow. The result is a set of lines that appear to be connected. In order to get a clean look at the
intersections, all the black lines are drawn first. Then, all the yellow lines are drawn. This way, the
intersections appear to have continuous paths of yellow, rather than every individual shape being
terminated by a curving black outline.

LineSymbolizer road = new LineSymbolizer(Color.Yellow, 5);
road.SetOutline(Color.Black, 1);
mylayer.Symbolizer = road;

Objective: Yellow Roads with Black Outlines

Figure 74: Unique Values

1.5.4 Unique Values

One of the more useful abilities is to be able to programmatically apply symbology by unique values,
without having to worry about what those values are or negotiate the actual color in each case.
Simply specify a classification type of UniqueValues and a classification field, and DotSpatial does
the rest. In this case, the default editor settings will create a hue ramp with a saturation and lightness
in the range from .7 to .8. The editor settings can be used to control the acceptable range using the
Start and End color. There is a Boolean property called HueSatLight. If this is true, then the ramp is
created by adjusting the hue, saturation and lightness between the start and end colors. If this is
false, then the red, blue and green values are ramped instead. In both cases, alpha (transparency) is
ramped the same way.

Objective: Roads Colored by Unique Tile ID

LineScheme myScheme = new LineScheme(); myScheme.EditorSettings.ClassificationType =
ClassificationType.UniqueValues; myScheme.EditorSettings.FieldName = "CARTO";
myScheme.CreateCategories(mylayer.DataSet.DataTable);
mylayer.Symbology = myScheme;

Figure 75: Roads with Unique Values

1.5.5 Custom Categories

In the previous example, the legend shows a collapsible field name in order to clarify the
meaning of the values appearing for each category. This can also be accomplished manually by
controlling the “AppearsInLegend” property on the scheme. If this is false, the categories will appear
directly below the layer. When it is true, you can control the text in the legend using the scheme itself.
Showing this principal in action, in this sample we will show the code that will programmatically set
up two categories, and also have them appear under a scheme in the legend.

LineScheme myScheme = new LineScheme(); myScheme.Categories.Clear();
LineCategory low = new LineCategory(Color.Blue, 2);
low.FilterExpression = "[CARTO] = 3";
low.LegendText ="Low";
LineCategory high = new LineCategory(Color.Red, Color.Black, 6, DashStyle.Solid,
LineCap.Triangle);
high.FilterExpression = "[CARTO] = 2";

Objective: Custom Road Categories

high.LegendText = "High";
myScheme.AppearsInLegend = true;
myScheme.LegendText = "CARTO";
myScheme.Categories.Add(low);
myScheme.Categories.Add(high);
mylayer.Symbology = myScheme;

Figure 76: Custom Line Categories

1.5.6 Compound Lines

Each individual LineSymbolizer is made up of at least one, but potentially several strokes overlapping
each other. The two main forms of strokes that are supported natively by DotSpatial are Simple
Strokes and Cartographic Strokes. Cartographic strokes have a few more options that allow for
custom dash configurations as well as specifying line decorations. Decorations are basically just point
symbols that can appear at the end of the stroke, or evenly arranged along the length of the stroke.

Objective: Lines with Multiple Strokes

Figure 59: Stroke Class Hierarchy

In this example, we will take advantage of several powerful symbology options. We will use
cartographic strokes in order to create two very different type of line styles. In the first case, we will
create brown railroad ties. Using the standard “Dot” option for a simple cartographic line would not
work because the dots created are proportional to the line width. However, with a custom dash
pattern, it is possible to set the lines so that the dashes are thinner than the line width itself. The two
numbers used in the dash pattern do not represent offsets, but rather the lengths of the dash and
non‐dash elements that alternate. This is convenient, since for our repeating ties, we really only
need to specify two numbers.

The second layer of the symbol will be dark gray rails. In this case, the dash pattern is continuous, so
we will not need to change it. However, the rails don’t persist the whole way across the line the
way the ties do. Instead, we want to have two thin lines that appear along the path width. To do this,
we take advantage of a CompoundArray. With the compound array, you are expressing the actual
offsets for the start and end positions along the compound array, where 0 is the left of the line and 1
is the right. In some cases, lines that are two thin may not get drawn at all, so try to ensure that the
width of the lines represented in the Compound array work out to be just slightly larger than 1 to
ensure that the lines ultimately get drawn.

In the code below, the start and end caps are also specified. By default these are set to round, which
will end up producing gray circles at each of the intersections. By specifying that the end caps should
be flat, no extension will be added to ends of the lines. Rounded caps look the best for solid lines
because it creates a kind of rounded, buffered look to roads that are wider than one pixel.

using System.Drawing.Drawing2D;

LineSymbolizer mySymbolizer = new LineSymbolizer();
mySymbolizer.Strokes.Clear();
CartographicStroke ties = new CartographicStroke(Color.Brown);
ties.DashPattern = new float[] {1/6f, 2/6f};
ties.Width = 6;
ties.EndCap = LineCap.Flat; ties.StartCap = LineCap.Flat;
CartographicStroke rails = new CartographicStroke(Color.DarkGray);
rails.CompoundArray = new float[]{.15f,.3f,.6f,.75f};
rails.Width = 6;
rails.EndCap = LineCap.Flat;
rails.StartCap = LineCap.Flat;
mySymbolizer.Strokes.Add(ties);
mySymbolizer.Strokes.Add(rails);
mylayer.Symbolizer = mySymbolizer;

Figure 77: Multi‐Stroke Railroads

1.5.7. Line Decorations

One of the features with this generation of DotSpatial is the ability to add point decorations to lines.
Each decoration has one symbolizer and can operate with several positioning options. Each stroke
can support multiple decorations, so there is a great deal of customizable patterns available. The
decorations can also be given an offset so that the decoration can appear on one side of the line or
another. In this case, we will be adding yellow stars to a blue line.

LineDecoration star = new LineDecoration();
star.Symbol = new PointSymbolizer(Color.Yellow,DotSpatial.Symbology.PointShape.Star, 16);
star.Symbol.SetOutline(Color.Black, 1);
star.NumSymbols = 1;
CartographicStroke blueStroke = new CartographicStroke(Color.Blue);
blueStroke.Decorations.Add(star);
LineSymbolizer starLine = new LineSymbolizer();
starLine.Strokes.Clear();
starLine.Strokes.Add(blueStroke); mylayer.Symbolizer =
starLine;

Figure 78: Lines with Star Decorations

Objective: Lines Decorated by Stars

1.6 Programmatic Polygon Symbology

1.6.1 Add Polygon Layers

Polygon layers are another representation of vector content where there is an area being
surrounded by a boundary. Polygons can have any number of holes, which are represented as inner
rings that should not be filled. However, in order to represent a shape like Hawaii, which has several
islands, as a single shape, you would use a MultiPolygon instead. A MultiPolygon is still considered to
be a geometry and will respond to all of the geometry methods, like Intersects. We can add the
polygon shapefile the same way that we added the point or line shapefiles.

Polygon symbolizers are slightly different from the other two symbolizers because in the case of
polygons, we have to describe both the borders and the interior. Since the borders are basically just
lines, rather than replicating all the symbology options as part of the polygon symbolizer directly,
each polygon symbolizer references a line symbolizer in order to describe the borders. This is a
similar strategy to re‐using the PointSymbolizer in order to describe the decorations that can appear
on lines.

IFeatureSet fs = FeatureSet.Open(@"[Your Folder]\DotSpatialDev\shapefiles\Counties\Counties.shp")
IMapFeatureLayer mylayer = map1.layers.Add(fs);

Figure 79: Add County Boundaries

Objective: Add a Polygon Layer to the Map

1.6.2. Simple Patterns

The simplest task with polygons is to set the fill color for those polygons. You will see that
specifying only an interior fill creates a continuous appearance, since the normal boundaries are
adjacent and all the same color.

private void BluePolygons(IMapFeatureLayer mylayer)
{
PolygonSymbolizer lightblue = new PolygonSymbolizer(Color.LightBlue);
mylayer.Symbolizer = lightblue;

}

Figure 80: Blue Fill Only Figure 81: With Blue Border

PolygonSymbolizer lightblue = new PolygonSymbolizer(Color.LightBlue); lightblue.OutlineSymbolizer
= new LineSymbolizer(Color.Blue, 1);
mylayer.Symbolizer = lightblue;

1.6.3. Gradients

One of the more elegant symbology options is to apply a gradient. These can vary in type from linear,
to circular to rectangular, with the most frequently used type of gradient by far being linear. If you
want to apply a continuous gradient across the entire layer, you can use the default category and
simply specify the symbolizer. Unlike the previous example where we directly set up the outline
symbolizer, in this example we are taking advantage of the shared method “SetOutline” which does
the same thing. For points, this method controls the symbols themselves. For lines, this adds a

Objective: Specify Blue Polygons

Objective: Full Layer Gradient

slightly larger stroke beneath the existing strokes. For polygons, this controls the line symbolizer
that is used to draw the outline. The gradient angle is specified in degrees, moving counter‐clockwise
from the positive x axis.

PolygonSymbolizer blueGradient =
new PolygonSymbolizer(Color.LightSkyBlue, Color.DarkBlue, 45, GradientType.Linear);
blueGradient.SetOutline(Color.Yellow, 1);
mylayer.Symbolizer = blueGradient;

Figure 82: Continuous Blue Gradient

1.6.4. Individual Gradients

Another possible symbology is to create the gradients so that they are shape specific. This is not really
recommended in the case of large numbers of polygons because the drawing gets linearly slower for
each specific drawing call. You can draw thousands of polygons with one call by having only one
symbolic class to describe all the polygons. In the case of a few hundred classes, this distinction is
not really noticeable. To rapidly create different categories, we can take advantage of the “name”
field which is different for each of the major shapes in the shapefile.

Objective: Shape Specific Gradients

PolygonSymbolizer blueGradient =new PolygonSymbolizer(Color.LightSkyBlue, Color.DarkBlue,

-45, GradientType.Linear);
PolygonScheme myScheme = new PolygonScheme(); myScheme.EditorSettings.TemplateSymbolizer =
blueGradient; myScheme.EditorSettings.UseColorRange = false;
myScheme.EditorSettings.ClassificationType = ClassificationType.UniqueValues;
myScheme.EditorSettings.FieldName = "nam";
myScheme.CreateCategories(mylayer.DataSet.DataTable);
mylayer.Symbology = myScheme;

Figure 83: Individual Gradients

1.6.5 Multi‐Colored Gradient

One thing that may seem less than obvious is that in the previous exercise we specified that the
UseGradient property should be false. This does not prevent the template symbolizer from having
a gradient. Instead, it prevents the symbolizer from overriding the original, presumably simpler,
template with a gradient symbol. The gradient symbol will be calculated using a color from the color
range, but then will make the upper left a little lighter and the lower right a little darker. That way,
you can have the same subtle gradient applied, but still use different colors for each category. To
boot, the default polygon symbolizer has a border that is the same hue, but slightly darker, which
tends to create a nice outline color.

PolygonScheme myScheme = new PolygonScheme();
myScheme.EditorSettings.StartColor = Color.LightGreen;
myScheme.EditorSettings.EndColor = Color.LightBlue;
myScheme.EditorSettings.ClassificationType = ClassificationType.UniqueValues;
myScheme.EditorSettings.FieldName = "name";
myScheme.EditorSettings.UseGradient = true;
myScheme.CreateCategories(mylayer.DataSet.DataTable);

Objective: Cool Colors with Gradient

mylayer.Symbology = myScheme;

Figure 84: Unique Cool Colors with Gradient

1.6.6. Custom Polygon Categories

An important terminology difference here that we have been using is the difference between
Symbolizer and Symbology. With Symbology, we are always referring to a scheme, which can have
many categories. With a Symbolizer, we are talking about controlling how those shapes are drawn
for one category. By default, all the feature layers start with a scheme that has exactly one
category, which has a symbolizer with exactly one drawing element (symbol, line or pattern). The
Symbolizer property on a layer is a shortcut to the top‐most category. If you have several categories, it
may be better to control the symbolizers explicitly than to use the shortcut. Labels have been added to
the layer below in order to illustrate that the two pink shapes are in fact shapes that start with G.
The actual labeling code will be illustrated under a separate section under labeling.

 PolygonScheme scheme = new PolygonScheme();
 PolygonCategory washington = new PolygonCategory(Color.LightBlue,

Color.DarkBlue, 1);
 washington.FilterExpression = "[name] = 'Washington'";
 washington.LegendText = "Washington";
 PolygonCategory gWords = new PolygonCategory(Color.Pink, Color.DarkRed, 1);
 gWords.FilterExpression = "[name] Like 'G*'";
 gWords.LegendText = "G - Words";

Objective: Custom Polygon Categories

 scheme.ClearCategories();
 scheme.AddCategory(washington);
 scheme.AddCategory(gWords);
 mylayer.ShowLabels = true;
 mylayer.Symbology = scheme;

Figure 85: Custom Categories

1.6.7 Compound Patterns

Like the other previous symbolizers, polygon symbolizers can be built out of overlapping drawing
elements. In this case they are referred to as patterns. The main patterns currently supported are
simple, gradient, picture and hatch patterns. Simple patterns are a solid fill color, while gradient
patterns can work with gradients set up as an array of colors organized in floating point positions from
0 to 1. The angle controls the direction of linear and rectangular gradients. Hatch patterns can be
built from an enumeration of hatch styles. Picture patterns allow for scaling and rotating a selected
picture from a file.

Objective: Multi‐Layer Patterns

Figure 86: Pattern Class Diagram

One thing in particular to note about this next example is that in all the previous examples with
multiple patterns, we simply cleared out the default pattern that was automatically created as part of
the symbolizer. When we add a new pattern, the new pattern gets drawn on top of the previous
patterns, so the last pattern added has the highest drawing priority. In the code below, the new
pattern has its background color set to transparent, yet in the image below we see that the coloring is
red stripes against a blue background. The pattern below the red‐stripe pattern is the default pattern,
and will be randomly generated as a different color each time.

PolygonSymbolizer mySymbolizer = new PolygonSymbolizer();
mySymbolizer.Patterns.Add(newHatchPattern(HatchStyle.WideDownwardDiagonal,

Color.Red,Color.Transparent));
myLayer.Symbolizer = mySymbolizer;

Figure 87: Hatch Patterns

1.7 Programmatic Labels

For the first example with labels, we will show adding your own text in a way so that the same text
gets added to all the features. This uses the default settings, and you can see from the default
settings that there is no background, and each label has the left side aligned with the center point by
default.

IMapLabelLayer labelLayer = new MapLabelLayer();
labelLayer.Symbology.Categories[0].Expression = "Test";
myLayer.ShowLabels = true;
myLayer.LabelLayer = labelLayer;

Figure 88: Adding Test Labels

1.7.1 Field Name Expressions

The field name in this case describes the name of the territory. In order for the name field to appear
in the label text, we simply enclose it in square brackets. This puts together a versatile scenario
where you can build complex expressions with various field names. You can also use escape
characters to create multi‐line labels.

Objective: Labels

Objective: Field Name Labels

IMapLabelLayer labelLayer = new MapLabelLayer(); ILabelCategory
category = labelLayer.Symbology.Categories[0]; category.Expression
= "[NAME]";
category.Symbolizer.Orientation = ContentAlignment.MiddleCenter;
myLayer.ShowLabels = true;
myLayer.LabelLayer = labelLayer;

Figure 89: Field Name Labels

1.7.2 Multi‐Line Labels

Creating multi‐line labels is simple, since all you have to do is use the standard .Net new‐line
character, which in C# is added using the \n, while in visual basic you would combine the two strings
with a vbNewLine element between them. The relative position of the multiple lines is controlled by
the Alignment property on the label Symbolizer. In order to minimize confusion, the labels follow the
same organization with a scheme, categories and symbolizers. A filter expression also allows us to
control which labels are added.

IMapLabelLayer labelLayer = new MapLabelLayer(); ILabelCategory
category = labelLayer.Symbology.Categories[0]; category.Expression
= "[NAME]\nPopulation: [POP_LASTCE]"; category.FilterExpression =
"[NAME] Like 'G*'"; category.Symbolizer.BackColorEnabled = true;

Objective: Multi‐Line Labels

category.Symbolizer.BorderVisible = true;
category.Symbolizer.Orientation = ContentAlignment.MiddleCenter;
category.Symbolizer.Alignment = StringAlignment.Center;
myLayer.ShowLabels = true;
myLayer.LabelLayer = labelLayer;

Figure 90: Multi‐Line Labels

Multiple label categories can be created and added to the scheme in the same way that the
featuresets were able to add different categories. The labels also allow for the font to be
controlled, as well as the text color, background color and opacity of either.

1.7.3. Translucent Labels

The background color in this case has been set to transparent by specifying an alpha value of something
less than 255 when setting the BackColor. Frequently, there are opacity properties available in addition
to the actual color, but that is just there for serialization purposes. This example also illustrates the use
of the compound conjunction “OR” in the filter expression. Other powerful terms that can be used are
“AND” and “NOT” as well as the combined expression “Is Null” which is case insensitive and can identify
null values separately from empty strings for instance. Notice that is not “= null” which doesn’t work
with .Net DataTables. For the negative you could use “NOT [NAME] is null”.

 IMapLabelLayer labelLayer = new MapLabelLayer();
 ILabelCategory category = labelLayer.Symbology.Categories[0];
 category.Expression = "[NAME]\nPopulation: [POP_LASTCE]";

Objective: Translucent Labels

 category.FilterExpression = "[NAME] = 'Tooele' OR [NAME] = 'Kane'";
 category.Symbolizer.BackColorEnabled = true;
 category.Symbolizer.BackColor = Color.FromArgb(128, Color.LightBlue);
 category.Symbolizer.BorderVisible = true;
 category.Symbolizer.FontStyle = FontStyle.Bold;
 category.Symbolizer.FontColor = Color.DarkRed;
 category.Symbolizer.Orientation = ContentAlignment.MiddleCenter;
 category.Symbolizer.Alignment = StringAlignment.Center;
 mylayer.ShowLabels = true;
 mylayer.LabelLayer = labelLayer;

Figure 91: Translucent Labels

1.8. Programmatic Raster Symbology

1.8.1 Download Data

In addition to the vector data that we have been looking at so far, DotSpatial also supports a number of
raster formats. Rasters are considered distinct from images for us in that the visual representation
that we see is derived from the values much in the way that we derive the polygon images from
the actual data. With rasters, you typically have a rectangular arrangement of values that are
organized in rows and columns. For datasets that don’t have complete sampling, a “No‐Data” value
allows the raster to only represent a portion of the total area.

Because of the existence of extensible data format providers, there is no way to tell just how many
formats DotSpatial will support at the time you are reading this. We have created a plug‐in that is
exclusive to the windows platform using Frank Warmerdan’s GDAL libraries and C# linkage files. The

Objective: Download a Raster Layer

plug‐in exposes many of the raster and image types supported by GDAL to DotSpatial 1.7, or any project
that adds our ApplicationManager component. In the Plugins and Extensions section there is a tutorial
on how to incorporate this extension into your program.

Figure 92: File Formats Available without GDAL

Figure 93: File Formats Available with GDAL

For this example we have installed the GDAL extension so we can use many more file formats. If you do
not wish to install the plugin you will have to use a .bgd file. For the next step we will download a DEM
from http://gis.utah.gov/. For this exercise we chose to download the 90 meter statewide DEM.

1.8.2. Add a Raster Layer

IRaster r= Raster.Open(@"[Your Folder]\DotSpatialDev\Rasters\
StatewideDEM_90meter\dem90_utm83\ dblbnd.adf");

IMapRasterLayer myLayer = map1.Layers.Add(r);

One thing that should be fairly obvious right away is that while similar to the previous examples, a raster
is a completely different data object. Instead of working with features and concentrating on ideas like
geometries, rasters give you direct access to the numerical data stored in grid form. Inheritance at
different levels is certainly used, but most of that occurs under the hood. The Raster class gives you a
friendly user interface that works regardless of what kind of drivers are operating under the hood. The
primary benefit to you is that writing the code becomes a lot simpler because you don’t need to worry
about what kind of raster you are working with.

Objective: Add a Raster Layer

http://gis.utah.gov/

Figure 94: Default Raster

Sometimes the symbology is thrown off by an unexpected no‐data value. We can use the symbolizer
interface for rasters in DotSpatial by double clicking next to the elevation layer in the legend. This will
launch a dialog like the one below.

Figure 95: Graph

Sometimes the graph will not display properly. In order to have it fix this simply change one of the data
values such as the number of separations and click cancel. Once you reopen the interface, the graph
should display properly.

We can see right away that of the many sample points that were taken from this image that the majority
of them lie in the 1‐4000 range. We can change the value of the separation by dragging the bars along
the graph. We can also change the values numerically by double clicking “Value” column on the table. By
right clicking on the graph we can also zoom to a specific category. In addition we change the color
options from this menu.

Figure 96: Layer Properties

The next step is to modify these values programmatically. Unfortunately for unknown reasons we
cannot modify the view range of the DEM of Utah. It appears that there is a problem with the DEM
itself. Even after converting it to different file formats it does not function. For the following examples
we will use a DEM downloaded from http://www.charttiff.com/Index.htm on their sample page.

1.8.3 Control Category Range

Objective: Control Category Range

http://www.charttiff.com/Index.htm

The only thing to notice when controlling the range is that you can control the range values
independently from modifying the legend text. In order to update the legend text based on other
settings, we can use the ApplyMinMax settings. Alternately, we could have set the legend text directly,
just as we can for the other categories. Since the new DEM we downloaded has a range of about 3,200
to 3700, we will split the range values in half. The first category will go from 3,200 to 3,450 and the
second category will go from 3,440 to 3,700.

private void ControlRange(IMapRasterLayer myLayer)
{
myLayer.Symbolizer.Scheme.Categories[0].Range = new Range(3200, 3450);
myLayer.Symbolizer.Scheme.Categories[0].ApplyMinMax(myLayer.Symbolizer.EditorSettings);
myLayer.Symbolizer.Scheme.Categories[1].Range = new Range(3440, 3700);
myLayer.Symbolizer.Scheme.Categories[1].ApplyMinMax(myLayer.Symbolizer.EditorSettings);
myLayer.WriteBitmap();
}

Figure 97: Programmatic Restrict Range

1.8.4. Shaded Relief

myLayer.Symbolizer.Scheme.Categories[0].Range = new Range(3200, 3450);
myLayer.Symbolizer.Scheme.Categories[0].ApplyMinMax(myLayer.Symbolizer.EditorSettings);
myLayer.Symbolizer.Scheme.Categories[1].Range = new Range(3440, 3700);

Objective: Add Lighting

myLayer.Symbolizer.Scheme.Categories[1].ApplyMinMax(myLayer.Symbolizer.EditorSettings);
myLayer.Symbolizer.ShadedRelief.ElevationFactor = 1; myLayer.Symbolizer.ShadedRelief.IsUsed
= true;
myLayer.WriteBitmap();

Figure 98: With Lighting

1.8.5. Predefined Schemes

There are several pre‐defined color schemes that can be used. All of the pre‐set schemes
basically use two separate ramps that subdivide the range and apply what is essentially a
coloring theme to the two ranges. Those ranges are easily adjustable using the range characteristics
on the category, but should be adjusted after the scheme has been chosen, or else applying the new
scheme will overwrite the previous range choices.

myLayer.Symbolizer.Scheme.ApplyScheme(ColorSchemeType.Glaciers, myLayer.DataSet);
myLayer.Symbolizer.Scheme.Categories[0].Range = new Range(3200, 3450);
myLayer.Symbolizer.Scheme.Categories[0].ApplyMinMax(myLayer.Symbolizer.EditorSettings);
myLayer.Symbolizer.Scheme.Categories[1].Range = new Range(3440, 3700);
myLayer.Symbolizer.Scheme.Categories[1].ApplyMinMax(myLayer.Symbolizer.EditorSettings);
myLayer.Symbolizer.ShadedRelief.ElevationFactor = 1;
myLayer.Symbolizer.ShadedRelief.IsUsed = true;
myLayer.WriteBitmap();

Objective: Use Glacier Coloring

Figure 99: Glaciers

1.8.6 Edit Raster Values

Previously, we have been using tricks to color the elevation but where we directly ignored the values
that were either no‐data values that read 0, or else apparently bad data values that showed
impossible values like 65,000. In this section we will use the raster data class itself in order to repair
the values programmatically. This will only alter the copy that we have in memory and will not
overwrite the values to the disk unless we specifically instruct it to do so. In the example below, we
can cycle through all of the values in the raster using the NumRows and NumColumns properties to
give us an idea of what the bounds are on the loops. The Value property takes a double index, and
will work with whatever the real data type is and convert that data type into doubles. We can use
this to quickly clean up the values on the raster before we ever create a layer. We can also assign the
no data value on the raster so that it matches the 0 values that cover a large portion of the raster.
This will automatically eliminate it from the statistical calculations so that our default symbology
should look better.

Objective: Fix Raster Values

IRaster r = Raster.Open(@"C:\Users\Matt\Documents\DotSpatialDev\Rasters\sampleDEM\O44121a1.dem");
r.NoDataValue = 0;
for (int row = 0; row < r.NumRows; row++)
{
 for (int col = 0; col < r.NumColumns; col++)
 {
 if (r.Value[row, col] > 3700) r.Value[row, col] = 3700;
 }
}
IMapRasterLayer mylayer = map1.Layers.Add(r);

Figure 100: Default Symbology of Fixed Raster

This looks better, and if we double click on the elevation layer, we can take a look at what the
statistical plot automatically shows. Assigning the no‐data value can be risky because there may be
values that were using the old no‐data value. This can easily be fixed by cycling through the raster in
the same way and adjusting values so that they work with the given statistics.

1.8.7. Quantile Breaks

Just like the FeatureSets, Rasters can use the EditorSettings property in order to customize how to build
schemes, rather than having to specify the schemes directly. This is where our previous edits to fix the
raster values become more important. If we had tried to apply quantile breaks before, instead of
coloring the raster appropriately, we would have had all but one of the ranges read 0‐0. Now, we get a
reasonable range.

myLayer.Symbolizer.EditorSettings.IntervalMethod = IntervalMethods.Quantile;
myLayer.Symbolizer.EditorSettings.NumBreaks = 5;
myLayer.Symbolizer.Scheme.CreateCategories(myLayer.DataSet);
myLayer.Symbolizer.ShadedRelief.ElevationFactor = 1; myLayer.Symbolizer.ShadedRelief.IsUsed =
true;

Objective: Quantile Break Values

myLayer.WriteBitmap();

Figure 101: Quantile Breaks

Figure 102: Raster Symbology Classes

1.9. Extension Methods

Rasters

 Figure 103: Raster Extension

Not all of the methods are supported directly

on a raster. Many useful methods are actually
supported in the form of “Extension Methods”.
For the raster, this includes useful methods
that can alter the raster bounds, like Translate,
or Scale, or Rotate. But other useful abilities
like CreateHillShade actually use the raster
values themselves in order to calculate a
floating point value that helps to control the
shaded relief aspect of any image that is created
from a raster. Other methods like
GetRandomValues, and GetNearestValue are
helpful for doing analysis, but one of the most
critical methods is CellToProj and ProjToCell,
which allows the developer to easily go back and
forth between geospatial coordinates and the
row and column indicies.

Objective:

Extension Methods

Feature

Figure 104: Feature Extension

Feature, and in fact any class that implements
the IFeature interface will be extended with the
geometry methods that are so critical to vector
calculations. These not only include the overlay
operations like Intersection, Union and
Symmetric Difference, but all the tests that you
might want to use like touches or within. Some
of the bonus methods are methods like Area,
which calculates the areas of polygons. Another
is Centroid, which calculates the center of mass
for geometries. ConvexHull can be used to
simplify a geometry in the same way that you
would simplify something by wrapping it with an
elastic band. It draws straight lines past
concave sections, and follows around with the
convex portions. The Distance tool finds the
minimum distance between two geometries,
and the IsWithinDistance simply changes the
Distance calculation to test it against a
threshold.

1.10 Adding Additional Plugins and Extensions

Throughout this tutorial we have used several plugins and extensions in order to make a basic GIS
application. Since DotSpatial uses a “plugin architecture” it is relatively easy to add extensions and
plugins to your project. In this section we will cover step by step how to install some of the more useful
and common plugins and extensions available for DotSpatial. If you have already gone through this
whole document then much of this will be review. For each tutorial we will start with a blank project,
however, for complete details on creating the project see 1.10.1.

1.10.1 GDAL

As mentioned previously, adding the GDAL extension will allow your project to use many more types of
data. GDAL stands for “Geospatial Data Abstraction Layer” and is an Open source project by Frank
Warmarda. It is used in nearly every GIS application including ArcGIS. In DotSpatial it is used through an
extension and an “AppManger.” Be sure to download DotSpatial before beginning. The first thing we
need to do is to start a new Visual Studio Project. We will name our project GDAL. Make sure to use the
C# template and to select “Windows Forms Application.”

Figure 105: New Project

Objective: Plugins and Extensions

Objective: Add GDAL Extension

We next need to add a .Net Framework Assembly reference to “System.ComponentModel.
Composition.” Right click on the “References” folder in the “Solution Explorer” and click “Add
Reference.”

Figure 106: Reference Folder

Go the “Assemblies” tab and click on “Framework.” Scroll down until you come to
“System.ComponentModel.Composition” and select it.

Figure 107: System.ComponentModel.Composition

Next go to the “Browse” tab and browse to where you saved the DotSpatial download. Be sure to use
the unzipped folder and make sure that it is not blocked. In this folder you will find the DotSpatial dlls.
Select all of them and click “Add.”

Figure 108: DotSpatial dlls

Figure 109: Add the dlls

You’re references folder should now look like Figure 110.

Figure 110: Updated Reference Folder

Before we can the “AppManger” and other map components we will need to add the DotSpatial
Controls to our toolbox. Go to the toolbox tab and right click to add a new tab. We will call this tab
“DotSpatial.”

Figure 111: Toolbox

Right click on your new tab and select “Choose Items.”

Figure 112: Choose Items

A new window will appear. Click on “Browse.”

Figure 113: Toolbox Items

Browse once again to your DotSpatial folder and select “DotSpatial.Controls.dll”

Figure 114: DotSpatial.Controls

Once you add the controls you should have access to the DotSpatial controls including the
“AppManger.” You will need to drag and drop the manger unto the form.

Figure 115: AppManger

In addition to the AppManger we will need to add a SpatialDockManger, Map, Legend,
SpatialHeaderControl, SpatialStatusStrip, and a button so that we can add a layer to our map. Our

project should now look like Figure 116.

Figure 116: Adding Controls

Now that we have added all the controls we will need to link them to the AppManger. Each of the
controls (except for the button) we just added, should link to the AppManger through the properties
tab like in Figure 117. We also need to link our map to our legend through the properties tab as well.

Figure 117: Linking Controls

Now that our controls are linked to our AppManger, we need to add some code. First we need to tell
the AppManger to load extensions. We do that by adding “appManger1.LoadExtensions();” as seen on
Figure 117. Next we need to add code to our button. Double clicking the button on the form page will
allow us to tie code to a button click event. We want our button to add a layer to our map when clicked
so we add “map1.AddLayer();” to our button click event.

Figure 118: Adding Code

Now that we have added the code we need to create a new folder in our project. When we run our
project the AppManger will now look for folders named “Plugins” and “Application Extensions” in our
Visual Studio project. However, these folders do not yet exist. In the next step we will add them.
Navigate to your bin/Debug folder in your project. On this computer the file path was
C:\Users\Matt\Desktop\GDAL\GDAL\bin\Debug. In the Debug folder create a new folder named
“Application Extensions.” We will copy the GDAL extension to this folder.

Figure 119: Application Extensions

The GDAL extension is included in the DotSpatial download. It is located in the “Windows Extension
Folder”

Figure 120: Windows Extensions

Copy the “DotSpatial.Data.Rasters.GdalExtension” and place it in the Application Extensions folder we
just created.

Figure 121: GDAL Extension

Now that we have the GDAL extension we can run our program and see the new file types.

Figure 122: New File Types

1.10.2. New Ribbon

One of the advantages of having DotSpatial support plugins is that we can easily add a more complex
ribbon than the stock DotSpatial ribbon. It still has the same functionality but has the advantage of being
more attractive and user friendly.

Figure 123: New Ribbon

If you would like to have this ribbon for your project you will first need to go
to http://dotspatialapp.codeplex.com and download the project to your computer. Unzip and unblock
the file. Next we will start a new Visual Studio project using a windows form. As we have done
previously we will need to add the usual DotSpatial dlls in addition to four new ones. The DotSpatialApp
that we just downloaded includes the DotSpatial dlls in addition to the new dlls we need.

Objective: Add a New Ribbon

http://dotspatialapp.codeplex.com/

Figure 124: DevExpress dlls

We also need to include “System.ComponentModel.Composition” so that we can use the AppManger.
Next we need to set up the user interface. Add a SpatialDockManger, Map, Legend, and an AppManger.
Link the AppManger to the other controls as well as link the Map control to the Legend. Now that we
have set up our user interface we can add some new code. We need to add the following using
statements:

using System.ComponentModel.Composition;
using DotSpatial.Controls.Docking;
using DevExpress.XtraBars;

Next we need to add following code after our class declaration:

[Export("Shell", typeof(ContainerControl))]
private static ContainerControl Shell;

After the “InitializeComponent();” add the following:

if (DesignMode) return;
Shell = this;
appManager1.LoadExtensions();
this.appManager1.DockManager.Add(new DockablePanel("kMap", "Map", map1, DockStyle.Fill));
new DotSpatial.Controls.DefaultMenuBars(appManager1).Initialize(appManager1.HeaderControl);

Figure 125: New Code

Now that we have the required code we just need to copy the ribbon extension to our “Application
Extensions” folder in our projects bin/Debug folder. In the DotSpatialApp folder there is an “Application
Extensions” folder. Inside this folder there is a “Ribbon” folder. Copy this folder to our project’s
“Application Extensions” folder.

Figure 126: Ribbon Folder

Now when you run the project you should have a new ribbon.

Figure 127: New Ribbon

2. Acknowledgements

We would like to thank the following for their contributions:

• Harold (Ted) Dunsford Jr.
• Mark Van
• Orden Jiří Kadlec

	1. Developer’s Corner
	1.1 Geometry Cheat Sheet
	1.1.1 Overlay Operations:

	1.2 Exercise 1: Assemble a Map Project
	1.2.1 Step 1: Start a New C# Application
	1.2.2 Step 2: Add DotSpatial Components
	1.2.3 Step 3: Set up interface for plugin Menu
	1.2.4 Step 4: Adding the Map and other Controls
	1.2.5 Step 5: Add the Legend and Toolbox
	1.2.6. Step 6: Link It All Together

	1.3 Exercise 2: Simplify Australia Data Layers
	1.3.1 Step 1: Download Data
	1.3.2 Step 2: Calculate Polygon Areas
	1.3.3. Step 3: Compute Centroids
	1.3.4 Step 4: Sub‐sample by Attributes
	1.3.5 Step 5: Export Layer to a File
	1.3.6 Step 6: Repeat with Highway Linear Referencing System Routes
	1.3.7 Step 7: Applying Labels

	1.4. Programmatic Point Symbology
	1.4.1 Add a Point Layer
	1.4.2 Simple Symbols
	1.4.3 Character Symbols
	1.4.4 Image Symbols
	1.4.5 Point Categories
	1.4.6 Compound Symbols

	1.5 Programmatic Line Symbology
	1.5.1 Adding Line Layers
	1.5.2. Simple Line symbols
	1.5.3. Outlined Symbols
	1.5.4 Unique Values
	1.5.5 Custom Categories
	1.5.6 Compound Lines
	1.5.7. Line Decorations

	1.6 Programmatic Polygon Symbology
	1.6.1 Add Polygon Layers
	1.6.2. Simple Patterns
	1.6.3. Gradients
	1.6.4. Individual Gradients
	1.6.5 Multi‐Colored Gradient
	1.6.6. Custom Polygon Categories
	1.6.7 Compound Patterns

	1.7 Programmatic Labels
	1.7.1 Field Name Expressions
	1.7.2 Multi‐Line Labels
	1.7.3. Translucent Labels

	1.8. Programmatic Raster Symbology
	1.8.1 Download Data
	1.8.2. Add a Raster Layer
	1.8.3 Control Category Range
	1.8.4. Shaded Relief
	1.8.5. Predefined Schemes
	1.8.6 Edit Raster Values
	1.8.7. Quantile Breaks

	1.9. Extension Methods
	1.10 Adding Additional Plugins and Extensions
	1.10.1 GDAL
	1.10.2. New Ribbon

	2. Acknowledgements

