diff --git a/examples/pytorch/conf/mnist.yaml b/examples/pytorch/conf/mnist.yaml index a44d68c5..d4b1527a 100644 --- a/examples/pytorch/conf/mnist.yaml +++ b/examples/pytorch/conf/mnist.yaml @@ -1,55 +1,3 @@ -defaults: - - _self_ - - data: torch_mnist - - model: torch_mnist - - attack: default - - files: mnist - - scorers: default - - override hydra/sweeper : optuna - - override hydra/sweeper/sampler : grid - - override hydra/launcher : joblib -def_name : control -atk_name : hsj -dataset : mnist -model_name : ResNet18 -device_id : gpu -stage : '???' -direction : - - "maximize" -_target_ : deckard.base.experiment.Experiment -optimizers : - - accuracy -hydra: - run: - dir: ${files.directory}/logs/${stage}/ - sweep: - dir: ${files.directory}/logs/${stage}/${model_name} - subdir : ${def_name}/${atk_name}/${hydra.job.num} - sweeper: - sampler: - _target_: optuna.samplers.GridSampler - direction: ${direction} - study_name: ${model_name}_${def_name}_${atk_name} - storage: sqlite:///${dataset}.db - n_jobs: ${oc.env:HYDRA_SWEEPER_N_JOBS, 8} - n_trials: ${oc.env:HYDRA_SWEEPER_N_TRIALS, 128} - max_failure_rate: 1.0 - params: - ++model.art.initialize.optimizer.lr: choice( 0.1, 0.01, 0.001, .0001, .00001, 0.000001) - ++model.trainer.nb_epoch: choice(1, 10, 30, 50, 100) - _target_: hydra_plugins.hydra_optuna_sweeper.optuna_sweeper.OptunaSweeper - launcher: - _target_: hydra_plugins.hydra_joblib_launcher.joblib_launcher.JoblibLauncher - n_jobs: ${oc.env:HYDRA_SWEEPER_N_JOBS, 8} - prefer : threads - verbose: 10 - timeout: null - pre_dispatch: n_jobs - batch_size: auto - temp_folder: /tmp/deckard - max_nbytes: 100000 - mmap_mode: r - defaults: - _self_ - data: torch_mnist