diff --git a/deckard/layers/afr.py b/deckard/layers/afr.py index 7d947a60..67e567e6 100644 --- a/deckard/layers/afr.py +++ b/deckard/layers/afr.py @@ -13,7 +13,6 @@ ) from .plots import calculate_failure_rate, drop_frames_without_results, min_max_scaling import matplotlib -from pathlib import Path import logging import yaml import argparse @@ -278,16 +277,16 @@ def split_data_for_aft( random_state=42, ) - weibull_dict = { + weibull_dict = { # noqa w605 "Intercept: rho_": "$\\rho$", - "Intercept: lambda_": "$\lambda$", - "data.sample.random_state: lambda_": "Random State", + "Intercept: lambda_": "$\lambda$", # noqa w605 + "data.sample.random_state: lambda_": "Random State", # noqa w605 "def_value: lambda_": "Defence Strength", "atk_value: lambda_": "Attack Strength", "train_time: lambda_": "$t_{train}$", "predict_time: lambda_": "$t_{predict}$", - "adv_accuracy: lambda_": "$\lambda_{adv.}$", - "accuracy: lambda_": "$\lambda_{ben.}$", + "adv_accuracy: lambda_": "$\lambda_{adv.}$", # noqa w605 + "accuracy: lambda_": "$\lambda_{ben.}$", # noqa w605 "adv_fit_time: lambda_": "$t_{attack}$", "adv_log_loss: lambda_": "Adv. Log Loss", "adv_failure_rate: lambda_": "$h_{adv.}(t,;\\theta)$", @@ -295,7 +294,7 @@ def split_data_for_aft( "model_layers: lambda_": "No. of Layers", "model.art.pipeline.initialize.kwargs.optimizer.lr: lambda_": "Learning Rate", "def_gen": "Defence", - } + } # noqa w605 weibull_plot_dict = { "file": "weibull_aft.pdf", @@ -337,14 +336,14 @@ def split_data_for_aft( "train_time": "$t_{train}$", "model_layers": "No. of Layers", "model.art.pipeline.initialize.kwargs.optimizer.lr": "Learning Rate", - "adv_accuracy": "$\lambda_{adv.}$", + "adv_accuracy": "$\lambda_{adv.}$", # noqa w605 "adv_fit_time": "$t_{attack}$", "adv_log_loss": "Adv. Log Loss", "predict_time": "$t_{predict}$", - "accuracy": "$\lambda_{ben.}$", + "accuracy": "$\lambda_{ben.}$", # noqa w605 "failure_rate": "$h_{ben.}(t,;\\theta)$", "atk_value": "Attack Strength", - } + } # noqa w605 cox_partial_dict = { "file": "cox_partial_effects.pdf", "covariate_array": "model_layers", @@ -377,8 +376,8 @@ def split_data_for_aft( ) log_normal_dict = { - "Intercept: sigma_": "$\sigma$", - "Intercept: mu_": "$\mu$", + "Intercept: sigma_": "$\sigma$", # noqa w605 + "Intercept: mu_": "$\mu$", # noqa w605 "def_value: mu_": "Defence Strength", "atk_value: mu_": "Attack Strength", "train_time: mu_": "$t_{train}$", @@ -388,12 +387,12 @@ def split_data_for_aft( "model.art.pipeline.initialize.kwargs.optimizer.lr: mu_": "Learning Rate", "data.sample.random_state: mu_": "Random State", "adv_log_loss: mu_": "Adv. Log Loss", - "adv_accuracy: mu_": "$\lambda_{adv.}$", - "accuracy: mu_": "$\lambda_{ben.}$", + "adv_accuracy: mu_": "$\lambda_{adv.}$", # noqa w605 + "accuracy: mu_": "$\lambda_{ben.}$", # noqa w605 "adv_failure_rate: mu_": "$h_{adv}(t,;\\theta)$", "def_gen": "Defence", "learning_rate: mu_": "Learning Rate", - } + } # noqa w605 log_normal_graph, lnt = plot_aft( X_train, @@ -419,16 +418,16 @@ def split_data_for_aft( "labels": ["18", "34", "50", "101", "152"], }, ) - log_logistic_dict = { - "Intercept: beta_": "$\\beta$", + log_logistic_dict = { # noqa w605 + "Intercept: beta_": "$\\beta$", # noqa w605 "Intercept: alpha_": "$\\alpha$", "data.sample.random_state: alpha_": "Random State", "def_value: alpha_": "Defence Strength", "atk_value: alpha_": "Attack Strength", "train_time: alpha_": "$t_{train}$", "predict_time: alpha_": "$t_{predict}$", - "adv_accuracy: alpha_": "$\lambda_{adv.}$", - "accuracy: alpha_": "$\lambda_{ben.}$", + "adv_accuracy: alpha_": "$\lambda_{adv.}$", # noqa w605 + "accuracy: alpha_": "$\lambda_{ben.}$", # noqa w605 "adv_fit_time: alpha_": "$t_{attack}$", "model_layers: alpha_": "No. of Layers", "model.art.pipeline.initialize.kwargs.optimizer.lr": "Learning Rate",