forked from praveenashokkumar/LinkNYC_Location_Study
-
Notifications
You must be signed in to change notification settings - Fork 0
/
choroplethNYC.py
206 lines (178 loc) · 7.77 KB
/
choroplethNYC.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
from __future__ import print_function, division
import os
import sys
import geopandas as gpd
import pylab as pl
import optparse
import matplotlib as mpl
import numpy as np
DEBUG = True
DEBUG = False
#for python 2/3 compatibility
try:
rawinput = raw_input
except NameError:
rawinput = input
def discrete_cmap(N, base_cmap=None):
'''Create an N-bin discrete colormap from the specified input map
from Jake VanDerPlas with minor modifications to let it with with divergent cmaps
https://gist.github.com/jakevdp/91077b0cae40f8f8244a#file-discrete_cmap-py-L18
Arguments:
N : number of colors
base_cmap : a pylab cmap name (string) or pylab cmap object'''
# Note that if base_cmap is a string or None, you can simply do
# return plt.cm.get_cmap(base_cmap, N)
# The following works for string, None, or a colormap instance:
from matplotlib.colors import LinearSegmentedColormap
base = pl.cm.get_cmap(base_cmap)
color_list = base(np.linspace(0, 1, N))
cmap_name = base.name + str(N)
return LinearSegmentedColormap.from_list(cmap_name, color_list, N)
def choroplethNYC(df, column=None, cmap='viridis', ax=None,
cb=True, kind='continuous', alpha=1, color=None, edgecolor=None,
scheme=None, k=10, spacing=False, lw=1, width=None, side=False):
'''creates a choroplath from a dataframe column - NYC tuned
Arguments:
df : a GeoDataFrame
column : a column name
cmap : colorman name (string optional)
ax : axis in figure object (string, optiona, is None a figure is created)
cb : put the color bar. Bool, default is True
kind :
spacing : the spacing for the colorbar (bool, optional)
lw : line width (float, optional, default is 1)
width : with width of the color bar (figure frction, float)
side : default False is left (west), True switches to right (east). If a float is passed that is the location
Returns the figure and the axis, for further manipulation
'''
if ax == None:
ax = pl.figure(figsize=(10, 10)).add_subplot(111)
if column == None:
if color == None:
ax = df.plot(cmap=cmap, alpha=alpha, ax=ax, linewidth=lw)
else:
ax = df.plot(alpha=alpha, ax=ax, linewidth=lw, color=color, edgecolor=edgecolor)
elif not scheme == None:
ax = df.plot(column=column, edgecolor=edgecolor,
cmap=cmap, alpha=alpha, ax=ax,
linewidth=lw, scheme=scheme, k=k, legend=True)
pl.legend(loc=2)
ax.axis('off')
leg = ax.get_legend()
#pl.legend(bbox_to_anchor=(2, 2), loc=2, borderaxespad=0)
leg.set_bbox_to_anchor((0.35, 0.95, 0, 0))
fig = ax.get_figure()
return None, ax, leg
else:
if kind == 'continuous' and not isinstance(df[column].values[0], (int, float)):
try:
df[column] = df[column].astype(float)
df[column].replace(np.inf, np.nan, inplace=True)
except ValueError:
kind = 'discrete'
ax = df.dropna(subset=[column]).plot(column=column, edgecolor=edgecolor,
cmap=cmap, alpha=alpha, ax=ax,
linewidth=lw)
vmin, vmax = min(df[column].values), max(df[column].values)
ax.axis('off')
fig = ax.get_figure()
if column == None:
return fig, ax
#if discrete variable you want steps cb
if kind is 'discrete':
nc = df[column].unique()
cmap = discrete_cmap(len(nc), base_cmap=cmap)
# location of colorbar is tuned to the shape of NYC: sits above SI, west of Manhattan
if cb:
if not side:
x0 = 0.2
elif isinstance(side, float):
x0 = side
else:
x0 = 0.9
if not width:
width = 0.03
cax = fig.add_axes([x0, 0.41, width, 0.44])
if kind is 'discrete':
sm = mpl.colorbar.ColorbarBase(ax=cax, cmap=cmap,
norm=pl.Normalize(vmin=vmin - .5,
vmax=vmax + .5),
#spacing='uniform',
orientation='vertical')
else:
sm = mpl.colorbar.ColorbarBase(ax=cax, cmap=cmap,
norm=pl.Normalize(vmin=vmin, vmax=vmax),
ticks=range(spacing + 1),
spacing='uniform',
orientation='vertical')
sm._A = []
if kind is 'discrete':
cb = fig.colorbar(sm, cax=cax, ticks=np.linspace(vmin, vmax, len(nc)))
cb.ax.set_yticklabels(['%s' % (c) for c in np.sort(nc)])
else:
cb = fig.colorbar(sm, cax=cax)
return fig, ax, cb
if __name__ == '__main__':
parser = optparse.OptionParser(usage="choroplathNYC <path to shapefile> <column>", conflict_handler="resolve")
parser.add_option('-d', '--discrete', default=False, action="store_true",
help='discrete steps color bar')
parser.add_option('-m', '--cmap', default='viridis', type='string',
help='matplotlib colormap name')
parser.add_option('-t', '--title', default=None, type='string',
help='title of figure')
parser.add_option('-o', '--output', default=None, type='string',
help='''output file
(must be pylab compatible extension, e.g. pdf png etc''')
parser.add_option('--clobber', default=False, action="store_true",
help='''clobber output file''')
parser.add_option('--noshow', default=False, action="store_true",
help='do not show figure (default)')
parser.add_option('--debug', default=False, action="store_true",
help='print debug statements')
options, args = parser.parse_args()
if options.debug:
DEBUG = True
if DEBUG:
print (options)
print (args)
if len(args) == 0:
options, args = parser.parse_args(args=['--help'])
sys.exit(0)
if args[0].endswith("shp"):
gdf = gpd.read_file(args[0])
else:
options, args = parser.parse_args(args=['--help'])
sys.exit(0)
if DEBUG: print (gdf.head())
kind = 'continous'
if options.discrete:
kind = 'discrete'
if len(args)>1:
if args[1] in gdf.columns:
try:
gdf[args[1]] = gdf[args[1]].astype(float)
except ValueError:
print ("the requested column cannot be converted to nuerical values. Available columns:",
gdf.columns)
sys.exit()
fig, ax, cb = choroplethNYC(gdf, args[1], cmap=options.cmap,
kind=kind)
else:
print ("column", args[1], "not in file. Available columns:",
gdf.columns)
sys.exit()
else:
fig, ax = choroplethNYC(gdf, cmap=options.cmap)
if not options.title is None:
ax.set_title(options.title, fontsize=20)
if not options.output is None:
if os.path.isfile(options.output) and not options.clobber:
answer = rawinput("file exists, really replace? (Y/n)\n")
if (answer.startswith('Y') or answer.startswith('y') or
answer.startswith('')):
fig.savefig(options.output, clobber=True)
else:
fig.savefig(options.output, clobber=True)
else:
if not options.noshow:
pl.show()