forked from hardmaru/cppn-gan-vae-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mnist_data.py
150 lines (144 loc) · 5.49 KB
/
mnist_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""Functions for downloading and reading MNIST data."""
'''
modified for the purpose of cppgan demo
'''
import gzip
import os
import urllib
import numpy as np
import matplotlib.pyplot as plt
SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
def maybe_download(filename, work_directory):
"""Download the data from Yann's website, unless it's already here."""
if not os.path.exists(work_directory):
os.mkdir(work_directory)
filepath = os.path.join(work_directory, filename)
if not os.path.exists(filepath):
filepath, _ = urllib.urlretrieve(SOURCE_URL + filename, filepath)
statinfo = os.stat(filepath)
print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
return filepath
def _read32(bytestream):
dt = np.dtype(np.uint32).newbyteorder('>')
return np.frombuffer(bytestream.read(4), dtype=dt)
def extract_images(filename):
"""Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError(
'Invalid magic number %d in MNIST image file: %s' %
(magic, filename))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
count = rows * cols * num_images
buf = bytestream.read(count[0])
data = np.frombuffer(buf, dtype=np.uint8)
data = data.reshape(num_images[0], rows[0], cols[0], 1)
return data
def dense_to_one_hot(labels_dense, num_classes=10):
"""Convert class labels from scalars to one-hot vectors."""
num_labels = labels_dense.shape[0]
index_offset = np.arange(num_labels) * num_classes
labels_one_hot = np.zeros((num_labels, num_classes))
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
return labels_one_hot
def extract_labels(filename, one_hot=False):
"""Extract the labels into a 1D uint8 numpy array [index]."""
print('Extracting', filename)
with gzip.open(filename) as bytestream:
magic = _read32(bytestream)
if magic != 2049:
raise ValueError(
'Invalid magic number %d in MNIST label file: %s' %
(magic, filename))
num_items = _read32(bytestream)
buf = bytestream.read(num_items[0])
labels = np.frombuffer(buf, dtype=np.uint8)
if one_hot:
return dense_to_one_hot(labels)
return labels
# class to store mnist data
class DataSet(object):
def __init__(self, images, labels):
# Convert from [0, 255] -> [0.0, 1.0].
images = images.astype(np.float32)
images = np.multiply(images, 1.0 / 255.0)
self._num_examples = len(images)
perm = np.arange(self._num_examples)
np.random.shuffle(perm)
self._images = images[perm]
self._labels = labels[perm]
self._epochs_completed = 0
self._index_in_epoch = 0
@property
def images(self):
return self._images
@property
def labels(self):
return self._labels
@property
def num_examples(self):
return self._num_examples
@property
def epochs_completed(self):
return self._epochs_completed
def next_batch(self, batch_size, with_label = False):
"""Return the next `batch_size` examples from this data set."""
start = self._index_in_epoch
self._index_in_epoch += batch_size
if self._index_in_epoch > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Shuffle the data
perm = np.arange(self._num_examples)
np.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
# Start next epoch
start = 0
self._index_in_epoch = batch_size
assert batch_size <= self._num_examples
end = self._index_in_epoch
if with_label == True:
return self.distort_batch(self._images[start:end]), self._labels[start:end]
return self.distort_batch(self._images[start:end])
def distort_batch(self, batch):
batch_size = len(batch)
row_distort = np.random.randint(0, 3, batch_size)
col_distort = np.random.randint(0, 3, batch_size)
result = np.zeros(shape=(batch_size, 26, 26, 1), dtype=np.float32)
for i in range(batch_size):
result[i, :, :, :] = batch[i, row_distort[i]:row_distort[i]+26, col_distort[i]:col_distort[i]+26, :]
return result
def show_image(self, image):
plt.subplot(1, 1, 1)
plt.imshow(np.reshape(image, (26, 26)), cmap='Greys', interpolation='nearest')
plt.axis('off')
plt.show()
def shuffle_data(self):
perm = np.arange(self._num_examples)
np.random.shuffle(perm)
self._images = self._images[perm]
self._labels = self._labels[perm]
def read_data_sets(train_dir = 'fashion-MNIST_data', one_hot=False):
TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
VALIDATION_SIZE = 5000
local_file = maybe_download(TRAIN_IMAGES, train_dir)
train_images = extract_images(local_file)
local_file = maybe_download(TRAIN_LABELS, train_dir)
train_labels = extract_labels(local_file, one_hot=one_hot)
local_file = maybe_download(TEST_IMAGES, train_dir)
test_images = extract_images(local_file)
local_file = maybe_download(TEST_LABELS, train_dir)
test_labels = extract_labels(local_file, one_hot=one_hot)
all_images = np.vstack((train_images, test_images))
all_labels = np.concatenate((train_labels, test_labels))
#data_sets = DataSet(all_images, all_labels) # train on all train+test sets 70k
data_sets = DataSet(train_images, train_labels) # train only only train set 60k
return data_sets