-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcputemp.c
288 lines (242 loc) · 7.41 KB
/
cputemp.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <stdio.h>
#include <sys/processor.h>
#include <sys/procset.h>
#include <kstat.h>
#include <stdlib.h>
#define DEV_CPUID "/dev/cpu/self/cpuid"
#define DEV_MSR "/dev/cpu/self/msr"
#define MAX_CPUS 1024
typedef struct {
uint32_t eax, ebx, ecx, edx;
} regs_t;
typedef struct {
int cpu_index;
int chip_id;
int core_id;
} cpu_info_t;
long getKStatNumber(kstat_ctl_t *kernelDesc, char *moduleName, char *recordName, char *fieldName);
char *getKStatString(kstat_ctl_t *kernelDesc, char *moduleName, char *recordName, char *fieldName);
int read_msr_on_cpu(int cpu_index, uint32_t msr_index, uint64_t *result);
int read_msr(uint32_t msr_index, uint64_t *result);
int read_cpuid(uint32_t cpuid_func, regs_t *regs);
int read_cpuid_on_cpu(int cpu_index, uint32_t cpuid_func, regs_t *regs);
void temp_to_str(char *str, int temp);
int main(int argc, char *argv[1]) {
regs_t regs;
kstat_ctl_t *kstat;
cpu_info_t cpus[MAX_CPUS];
int cpu_count;
int cpu_sockets = 0;
if ((kstat = kstat_open()) == NULL) {
perror("kstat_open");
return (1);
}
int machine_readable = 0;
int display_cpu = -1;
if(argc > 1) {
if(!strcmp(argv[1], "-p")) {
machine_readable = 1;
}
if(argc > 2) {
display_cpu = atoi(argv[2]);
}
}
for(cpu_count = 0; cpu_count < MAX_CPUS; cpu_count++) {
char record_name[128];
sprintf(record_name, "cpu_info%d", cpu_count);
int chip_id;
if ((chip_id = getKStatNumber(kstat, "cpu_info", record_name, "chip_id")) < 0) {
break;
}
int core_id = getKStatNumber(kstat, "cpu_info", record_name, "pkg_core_id");
cpus[cpu_count].cpu_index = cpu_count;
cpus[cpu_count].chip_id = chip_id;
cpus[cpu_count].core_id = core_id;
if(chip_id + 1 > cpu_sockets){
cpu_sockets = chip_id + 1;
}
}
if(!machine_readable) printf("Found %d CPU%s in %d socket%s\n", cpu_count, (cpu_count == 1) ? "" : "s", cpu_sockets, (cpu_sockets == 1) ? "" : "s");
int cpu_socket, cpu_core, cpu_index;
uint64_t msr;
for(cpu_socket = 0; cpu_socket < cpu_sockets; cpu_socket++) {
// find cores for current socket
for(cpu_core = 0; cpu_core < MAX_CPUS; cpu_core++) {
cpu_info_t *core_ptr = NULL;
for(cpu_index = 0; cpu_index < cpu_count; cpu_index++) {
cpu_info_t *cpu_ptr = &cpus[cpu_index];
if((cpu_ptr->chip_id == cpu_socket) && (cpu_ptr->core_id == cpu_core)) {
core_ptr = cpu_ptr;
break;
}
}
if(core_ptr) {
read_cpuid_on_cpu(cpu_index, 6, ®s);
int has_package_temp_monitor = (regs.eax >> 6) & 0x01;
int has_thermal_monitoring = (regs.eax) & 0x01;
if(has_thermal_monitoring) {
// read TjMAX first
int tj_max = 100;
if(read_msr_on_cpu(cpu_index, 0x1a2, &msr) == 0) {
tj_max = (msr >> 16) & 0x7f;
}
if(core_ptr->core_id == 0) {
// this is the first core, so print package information, too
int package_temp = -1;
if(has_package_temp_monitor) {
if(read_msr_on_cpu(cpu_index, 0x1b1, &msr) == 0) {
package_temp = tj_max - ((msr >> 16) & 0x7f);
}
}
if(!machine_readable) {
printf("Socket #%d", core_ptr->chip_id);
if(package_temp >= 0) {
printf(" temp : %d \u00B0C\n", package_temp);
} else {
printf("\n");
}
}
}
// print core information
int core_temp = -1;
if(read_msr_on_cpu(cpu_index, 0x19c, &msr) == 0) {
core_temp = tj_max - ((msr >> 16) & 0x7f);
}
if(!machine_readable) {
printf("\tCore #%d", cpu_core);
if(core_temp >= 0) {
printf(" temp : %d \u00B0C\n", core_temp);
} else {
printf("\n");
}
} else {
if(display_cpu == -1) {
printf("%d %d\n", core_ptr->cpu_index, core_temp);
} else if(display_cpu == core_ptr->cpu_index) {
printf("%d\n", core_temp);
}
}
}
}
}
}
kstat_close(kstat);
return 0;
}
int read_msr_on_cpu(int cpu_index, uint32_t msr_index, uint64_t *result) {
int d;
if((d = open(DEV_MSR, O_RDONLY)) == -1) {
perror(DEV_MSR);
return(errno);
}
processor_bind(P_LWPID, P_MYID, cpu_index, NULL);
int res = (sizeof(uint64_t) == pread(d, result, sizeof(uint64_t), msr_index));
processor_bind(P_LWPID, P_MYID, PBIND_NONE, NULL);
close(d);
if(res) {
return (0);
} else {
return (1);
}
}
int read_msr(uint32_t msr_index, uint64_t *result) {
return read_msr_on_cpu(0, msr_index, result);
}
int read_cpuid_on_cpu(int cpu_index, uint32_t cpuid_func, regs_t *regs) {
int d;
if((d = open(DEV_CPUID, O_RDONLY)) == -1) {
perror(DEV_CPUID);
return (errno);
}
processor_bind(P_LWPID, P_MYID, cpu_index, NULL);
int read_data = pread(d, regs, sizeof(*regs), cpuid_func);
int saved_error = errno;
processor_bind(P_LWPID, P_MYID, PBIND_NONE, NULL);
close(d);
if(read_data != sizeof(*regs)) {
errno = saved_error;
perror(DEV_CPUID);
return(-1);
}
return(0);
}
int read_cpuid(uint32_t cpuid_func, regs_t *regs) {
return read_cpuid_on_cpu(0, cpuid_func, regs);
}
void temp_to_str(char *str, int temp) {
if(temp == -1) {
sprintf(str, "n/a");
} else {
sprintf(str, "%d", temp);
}
}
long getKStatNumber(kstat_ctl_t *kernelDesc, char *moduleName,
char *recordName, char *fieldName) {
kstat_t *kstatRecordPtr;
kstat_named_t *kstatFields;
long value;
int i;
if ((kstatRecordPtr = kstat_lookup(kernelDesc, moduleName, -1, recordName)) ==
NULL) {
return(-1);
}
if (kstat_read(kernelDesc, kstatRecordPtr, NULL) < 0)
return(-1);
kstatFields = KSTAT_NAMED_PTR(kstatRecordPtr);
for (i=0; i<kstatRecordPtr->ks_ndata; i++) {
if (strcmp(kstatFields[i].name, fieldName) == 0) {
switch(kstatFields[i].data_type) {
case KSTAT_DATA_INT32:
value = kstatFields[i].value.i32;
break;
case KSTAT_DATA_UINT32:
value = kstatFields[i].value.ui32;
break;
case KSTAT_DATA_INT64:
value = kstatFields[i].value.i64;
break;
case KSTAT_DATA_UINT64:
value = kstatFields[i].value.ui64;
break;
default:
value = -1;
}
return(value);
}
}
return(-1);
}
/* Fetch string statistic from kernel */
char *getKStatString(kstat_ctl_t *kernelDesc, char *moduleName,
char *recordName, char *fieldName) {
kstat_t *kstatRecordPtr;
kstat_named_t *kstatFields;
char *value;
int i;
if ((kstatRecordPtr = kstat_lookup(kernelDesc, moduleName, -1, recordName)) ==
NULL) {
return(NULL);
}
if (kstat_read(kernelDesc, kstatRecordPtr, NULL) < 0)
return(NULL);
kstatFields = KSTAT_NAMED_PTR(kstatRecordPtr);
for (i=0; i<kstatRecordPtr->ks_ndata; i++) {
if (strcmp(kstatFields[i].name, fieldName) == 0) {
switch(kstatFields[i].data_type) {
case KSTAT_DATA_CHAR:
value = kstatFields[i].value.c;
break;
default:
value = NULL;
}
return(value);
}
}
return(NULL);
}