- The idea
- TypeScript integration
- TypeScript compatibility
- Error reporters
- Custom error messages
- Implemented types / combinators
- Recursive types
- Branded types / Refinements
- Exact types
- Mixing required and optional props
- Custom types
- Generic Types
- Piping
- Community
- Tips and Tricks
A value of type Type<A, O, I>
(called "codec") is the runtime representation of the static type A
.
A codec can:
- decode inputs of type
I
(throughdecode
) - encode outputs of type
O
(throughencode
) - be used as a custom type guard (through
is
)
class Type<A, O, I> {
constructor(
/** a unique name for this codec */
readonly name: string,
/** a custom type guard */
readonly is: (u: unknown) => u is A,
/** succeeds if a value of type I can be decoded to a value of type A */
readonly validate: (input: I, context: Context) => Either<Errors, A>,
/** converts a value of type A to a value of type O */
readonly encode: (a: A) => O
) {}
/** a version of `validate` with a default context */
decode(i: I): Either<Errors, A>
}
The Either
type returned by decode
is defined in fp-ts, a library containing implementations of common algebraic types in TypeScript.
The Either
type represents a value of one of two possible types (a disjoint union). An instance of Either
is either an instance of Left
or Right
:
type Either<E, A> =
| {
readonly _tag: 'Left'
readonly left: E
}
| {
readonly _tag: 'Right'
readonly right: A
}
Convention dictates that Left
is used for failure and Right
is used for success.
Example
A codec representing string
can be defined as:
import * as t from 'io-ts'
const string = new t.Type<string, string, unknown>(
'string',
(input: unknown): input is string => typeof input === 'string',
// `t.success` and `t.failure` are helpers used to build `Either` instances
(input, context) => (typeof input === 'string' ? t.success(input) : t.failure(input, context)),
// `A` and `O` are the same, so `encode` is just the identity function
t.identity
)
and we can use it as follows:
import { isRight } from 'fp-ts/Either'
isRight(string.decode('a string')) // true
isRight(string.decode(null)) // false
More generally the result of calling decode
can be handled using fold
along with pipe
(which is similar to the pipeline operator)
import * as t from 'io-ts'
import { pipe } from 'fp-ts/function'
import { fold } from 'fp-ts/Either'
// failure handler
const onLeft = (errors: t.Errors): string => `${errors.length} error(s) found`
// success handler
const onRight = (s: string) => `No errors: ${s}`
pipe(t.string.decode('a string'), fold(onLeft, onRight))
// => "No errors: a string"
pipe(t.string.decode(null), fold(onLeft, onRight))
// => "1 error(s) found"
We can combine these codecs through combinators to build composite types which represent entities like domain models, request payloads etc. in our applications:
import * as t from 'io-ts'
const User = t.type({
userId: t.number,
name: t.string
})
So this is equivalent to defining something like:
type User = {
userId: number
name: string
}
The advantage of using io-ts
to define the runtime type is that we can validate the type at runtime, and we can also extract the corresponding static type, so we don’t have to define it twice.
Codecs can be inspected:
This library uses TypeScript extensively. Its API is defined in a way which automatically infers types for produced values
Note that the type annotation isn't needed, TypeScript infers the type automatically based on a schema (and comments are preserved).
Static types can be extracted from codecs using the TypeOf
operator:
type User = t.TypeOf<typeof User>
// same as
type User = {
userId: number
name: string
}
The stable version is tested against TypeScript 3.5.2
io-ts version | required TypeScript version |
---|---|
2.x+ | 3.5.2+ |
1.6.x+ | 3.2.2+ |
1.5.3 | 3.0.1+ |
1.5.2- | 2.7.2+ |
Note. This library is conceived, tested and is supposed to be consumed by TypeScript with the strict
flag turned on.
Note. If you are running < [email protected]
you have to polyfill unknown
.
You can use unknown-ts as a polyfill.
A reporter implements the following interface
interface Reporter<A> {
report: (validation: Validation<any>) => A
}
This package exports a default PathReporter
reporter
Example
import { PathReporter } from 'io-ts/PathReporter'
const result = User.decode({ name: 'Giulio' })
console.log(PathReporter.report(result))
// => [ 'Invalid value undefined supplied to : { userId: number, name: string }/userId: number' ]
You can define your own reporter. Errors
has the following type
interface ContextEntry {
readonly key: string
readonly type: Decoder<any, any>
}
interface Context extends ReadonlyArray<ContextEntry> {}
interface ValidationError {
readonly value: unknown
readonly context: Context
}
interface Errors extends Array<ValidationError> {}
Example
import { pipe } from 'fp-ts/function'
import { fold } from 'fp-ts/Either'
const getPaths = <A>(v: t.Validation<A>): Array<string> => {
return pipe(
v,
fold(
(errors) => errors.map((error) => error.context.map(({ key }) => key).join('.')),
() => ['no errors']
)
)
}
console.log(getPaths(User.decode({}))) // => [ '.userId', '.name' ]
You can set your own error message by providing a message
argument to failure
Example
import { either } from 'fp-ts/Either'
const NumberFromString = new t.Type<number, string, unknown>(
'NumberFromString',
t.number.is,
(u, c) =>
either.chain(t.string.validate(u, c), (s) => {
const n = +s
return isNaN(n) ? t.failure(u, c, 'cannot parse to a number') : t.success(n)
}),
String
)
console.log(PathReporter.report(NumberFromString.decode('a')))
// => ['cannot parse to a number']
You can also use the withMessage
helper from io-ts-types
Type | TypeScript | codec / combinator |
---|---|---|
null | null |
t.null or t.nullType |
undefined | undefined |
t.undefined |
void | void |
t.void or t.voidType |
string | string |
t.string |
number | number |
t.number |
boolean | boolean |
t.boolean |
unknown | unknown |
t.unknown |
array of unknown | Array<unknown> |
t.UnknownArray |
array of type | Array<A> |
t.array(A) |
record of unknown | Record<string, unknown> |
t.UnknownRecord |
record of type | Record<K, A> |
t.record(K, A) |
function | Function |
t.Function |
literal | 's' |
t.literal('s') |
partial | Partial<{ name: string }> |
t.partial({ name: t.string }) |
readonly | Readonly<A> |
t.readonly(A) |
readonly array | ReadonlyArray<A> |
t.readonlyArray(A) |
type alias | type T = { name: A } |
t.type({ name: A }) |
tuple | [ A, B ] |
t.tuple([ A, B ]) |
union | A | B |
t.union([ A, B ]) |
intersection | A & B |
t.intersection([ A, B ]) |
keyof | keyof M |
t.keyof(M) (only supports string keys) |
recursive types | t.recursion(name, definition) |
|
branded types / refinements | ✘ | t.brand(A, predicate, brand) |
integer | ✘ | t.Int (built-in branded codec) |
exact types | ✘ | t.exact(type) |
strict | ✘ | t.strict({ name: A }) (an alias of t.exact(t.type({ name: A }))) |
Recursive types can't be inferred by TypeScript so you must provide the static type as a hint
interface Category {
name: string
categories: Array<Category>
}
const Category: t.Type<Category> = t.recursion('Category', () =>
t.type({
name: t.string,
categories: t.array(Category)
})
)
interface Foo {
type: 'Foo'
b: Bar | undefined
}
interface Bar {
type: 'Bar'
a: Foo | undefined
}
const Foo: t.Type<Foo> = t.recursion('Foo', () =>
t.type({
type: t.literal('Foo'),
b: t.union([Bar, t.undefined])
})
)
const Bar: t.Type<Bar> = t.recursion('Bar', () =>
t.type({
type: t.literal('Bar'),
a: t.union([Foo, t.undefined])
})
)
You can brand / refine a codec (any codec) using the brand
combinator
// a unique brand for positive numbers
interface PositiveBrand {
readonly Positive: unique symbol // use `unique symbol` here to ensure uniqueness across modules / packages
}
const Positive = t.brand(
t.number, // a codec representing the type to be refined
(n): n is t.Branded<number, PositiveBrand> => 0 < n, // a custom type guard using the build-in helper `Branded`
'Positive' // the name must match the readonly field in the brand
)
type Positive = t.TypeOf<typeof Positive>
/*
same as
type Positive = number & t.Brand<PositiveBrand>
*/
Branded codecs can be merged with t.intersection
// t.Int is a built-in branded codec
const PositiveInt = t.intersection([t.Int, Positive])
type PositiveInt = t.TypeOf<typeof PositiveInt>
/*
same as
type PositiveInt = number & t.Brand<t.IntBrand> & t.Brand<PositiveBrand>
*/
You can make a codec exact (which means that additional properties are stripped) using the exact
combinator
const ExactUser = t.exact(User)
User.decode({ userId: 1, name: 'Giulio', age: 45 }) // ok, result is right({ userId: 1, name: 'Giulio', age: 45 })
ExactUser.decode({ userId: 1, name: 'Giulio', age: 43 }) // ok but result is right({ userId: 1, name: 'Giulio' })
You can mix required and optional props using an intersection
const A = t.type({
foo: t.string
})
const B = t.partial({
bar: t.number
})
const C = t.intersection([A, B])
type C = t.TypeOf<typeof C>
// same as
type C = {
foo: string
} & {
bar?: number | undefined
}
You can apply partial
to an already type
-defined codec via its props
field
const PartialUser = t.partial(User.props)
type PartialUser = t.TypeOf<typeof PartialUser>
// same as
type PartialUser = {
name?: string
age?: number
}
You can define your own types. Let's see an example
import { either } from 'fp-ts/Either'
// represents a Date from an ISO string
const DateFromString = new t.Type<Date, string, unknown>(
'DateFromString',
(u): u is Date => u instanceof Date,
(u, c) =>
either.chain(t.string.validate(u, c), (s) => {
const d = new Date(s)
return isNaN(d.getTime()) ? t.failure(u, c) : t.success(d)
}),
(a) => a.toISOString()
)
const s = new Date(1973, 10, 30).toISOString()
DateFromString.decode(s)
// right(new Date('1973-11-29T23:00:00.000Z'))
DateFromString.decode('foo')
// left(errors...)
Note that you can deserialize while validating.
Polymorphic codecs are represented using functions. For example, the following typescript:
interface ResponseBody<T> {
result: T
_links: Links
}
interface Links {
previous: string
next: string
}
Would be:
// where `t.Mixed = t.Type<any, any, unknown>`
const responseBody = <C extends t.Mixed>(codec: C) =>
t.type({
result: codec,
_links: Links
})
const Links = t.type({
previous: t.string,
next: t.string
})
And used like:
const UserModel = t.type({
name: t.string
})
functionThatRequiresRuntimeType(responseBody(t.array(UserModel)), ...params)
You can pipe two codecs if their type parameters do align
const NumberCodec = new t.Type<number, string, string>(
'NumberCodec',
t.number.is,
(s, c) => {
const n = parseFloat(s)
return isNaN(n) ? t.failure(s, c) : t.success(n)
},
String
)
const NumberFromString = t.string.pipe(NumberCodec, 'NumberFromString')
[email protected]
- io-ts-types - A collection of codecs and combinators for use with io-ts
- io-ts-reporters - Error reporters for io-ts
- io-ts-promise - Convenience library for using io-ts with promise-based APIs
[email protected]
- geojson-iots - codecs for GeoJSON as defined in rfc7946 made with io-ts
- graphql-to-io-ts - Generate typescript and corresponding io-ts types from a graphql schema
Use keyof
instead of union
when defining a union of string literals
const Bad = t.union([
t.literal('foo'),
t.literal('bar'),
t.literal('baz')
// etc...
])
const Good = t.keyof({
foo: null,
bar: null,
baz: null
// etc...
})
Benefits
- unique check for free
- better performance,
O(log(n))
vsO(n)
Beware that keyof
is designed to work with objects containing string keys. If you intend to define a numbers enumeration, you have to use an union
of number literals :
const HttpCode = t.union([
t.literal(200),
t.literal(201),
t.literal(202)
// etc...
])