-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscaling.cpp
72 lines (65 loc) · 2.4 KB
/
scaling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#include <opencv2/opencv.hpp>
#include <iostream>
using namespace cv;
using namespace std;
int matching(Mat img_1, Mat img_2, vector<KeyPoint> keypoints_1, Mat descriptors_1, map<pair<float, float>, pair<int, Mat>> &points) {
vector<KeyPoint> keypoints_2;
Mat descriptors_2;
Ptr<ORB> orb = ORB::create();
orb->detect(img_2, keypoints_2);
orb->compute(img_2, keypoints_2, descriptors_2);
BFMatcher matcher;
vector<DMatch> matches;
Mat img_matches, keypoints;
if (!descriptors_1.empty() && !descriptors_2.empty()) {
matcher.match(descriptors_1, descriptors_2, matches);
double max_dist = 0; double min_dist = 100;
// calculation of max and min distance between keypoints
for (int i = 0; i < descriptors_1.rows; i++) {
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
// Remember good matches
vector<DMatch>good_matches;
map<pair<float, float>, pair<int, Mat>>::iterator it;
for (int i = 0; i < descriptors_1.rows; i++) {
if (matches[i].distance <= max(2.8 * min_dist, 0.05)) {
good_matches.push_back(matches[i]);
Mat d = descriptors_1.row(i);
it = points.find({ keypoints_1[i].pt.x, keypoints_1[i].pt.y });
if (it != points.end()) {
(it->second).first += 1;
} else {
points.insert({ { keypoints_1[i].pt.x, keypoints_1[i].pt.y }, { 1, d } });
}
}
}
drawKeypoints(img_2, keypoints_2, keypoints, Scalar::all(-1), DrawMatchesFlags::DEFAULT);
drawMatches(img_1, keypoints_1, img_2, keypoints_2, good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
}
namedWindow("match result", WINDOW_NORMAL);
imshow("match result", img_matches);
waitKey();
return 0;
}
int main() {
Mat img = imread("testimg.jpg");
map <pair<float, float>, pair<int, Mat>> points;
Mat input;
cvtColor(img, input, 0);
vector<KeyPoint> keypoints_1;
Mat descriptors_1;
Ptr<ORB> orb = ORB::create();
orb->detect(input, keypoints_1);
orb->compute(input, keypoints_1, descriptors_1);
// making scaled images and matching
vector<float> coeff = { 5.0f, 2.0f, 1.2f, 0.8f, 0.6f, 0.5f };
for (int i = 0; i != 6; ++i) {
Mat scaled_img;
resize(img, scaled_img, Size(0, 0), coeff[i], coeff[i], INTER_LANCZOS4);
matching(input, scaled_img, keypoints_1, descriptors_1, points);
}
return 0;
}