-
Notifications
You must be signed in to change notification settings - Fork 3
/
utils.py
183 lines (155 loc) · 6.25 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import numpy as np
from torch.utils.data import dataset
import torch
from torch.autograd import Variable
from torchsample import TensorDataset
import os
from models import Net
class ScalarEncoder:
"""
A class for one-hot encoding scalars
"""
def __init__(self, num_of_bins, min, max):
self.num_bins = num_of_bins # possible values of the one-hot encoded representation.
self.min = min
self.max = max
self.multiplier = (self.num_bins - 2) / (self.max - self.min)
self.lookup = np.eye(self.num_bins)
def encode(self, input_arr):
"""
One-hot encodes 1D array of scalars . Scalars that fall bellow the `min` will have the same encoding.
Same is true for the ones that land above `max`
:param input_arr: 1D array of scalars
:return: 2D one array of size ( len(`input_arr`) , `num_of_bins`)
"""
scaled_input = np.array((input_arr - self.min) * self.multiplier).astype(np.int)
scaled_input = np.minimum(scaled_input, self.num_bins - 1)
scaled_input = np.maximum(scaled_input, 0)
encoded = self.lookup[scaled_input, :]
encoded[:, 0] = 0 # removing n/a inc angles, to prevent leakage
return encoded
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, window_size=None):
self.length = 0
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.window_size = window_size
def reset(self):
self.length = 0
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
if self.window_size and (self.count >= self.window_size):
self.reset()
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def accuracy(y_true, y_pred):
"""Given predicted probabilities and targets calculates accuracy."""
y_pred_decision = y_pred > 0.5
return (y_pred_decision.float() == y_true.float()).float().mean()
class MultiDataset(dataset.Dataset):
"""
Built-in datasets only one tensor as input. Sometimes it does not make sense to store all the input in one tensor.
In this case incident angle and images can't be put in the same tensor.
This class allows for iterating through different datasets (of the same length) in parallel.
"""
def __init__(self, datasets):
"""
Dataset class iterating through multiple datasets of the same length.
Arguments
---------
datasets: sequence of datasets of same length
"""
self.datasets = datasets
self.num_inputs = len(self.datasets[0])
def __len__(self):
return len(self.datasets[0])
def __getitem__(self, index):
"""
Index the datasets and return the input + target of each dataset
"""
outputs = []
for dataset in self.datasets:
outputs.append(dataset.__getitem__(index))
return outputs
def make_dataset(df, scalar_encoder, transforms, test=False):
"""
Does all the data manipulation and creates a dataset ready to be fed to the model
:param df: pandas daraframe
:param scalar_encoder: encoder to encode scalars
:param transforms: data transformations
:param test: indicate whether this a training/validation dataset or a test dataset
:return: dataset
"""
# Concat Bands into (N, 2, 75, 75) images
band_1 = np.concatenate([im for im in df['band_1']]).reshape(-1, 75, 75)
band_2 = np.concatenate([im for im in df['band_2']]).reshape(-1, 75, 75)
inc_angle = np.nan_to_num(df['inc_angle'].values)
inc_angle = scalar_encoder.encode(inc_angle)
# inc_angle_tr = np.zeros(train['inc_angle'].values.shape)
full_img = np.stack([band_1, band_2], axis=1)
# Dataset and DataLoader
imgs = torch.from_numpy(full_img).float()
angles = torch.from_numpy(inc_angle).float()
if test:
targets = None
else:
targets = torch.from_numpy(df['is_iceberg'].values).long()
dataset_imgs = TensorDataset(imgs, targets, input_transform=transforms)
dataset_angles = TensorDataset(angles, None)
dataset = MultiDataset((dataset_imgs, dataset_angles))
return dataset
def infer_ensemble(data, network_list, trial_per_sample):
"""Does a the forward pass for each network in the list `trial` number of times.
Returns the avg and std of trials of all networks"""
data_var_img = Variable(data[0][0].float().cuda())
data_var_angle = Variable(data[1].float().cuda())
networks_logits = []
for net in network_list:
trial_outputs = net(data_var_img, data_var_angle, trials=trial_per_sample).data
networks_logits.append(trial_outputs)
networks_logits = torch.stack(networks_logits, 1).squeeze_()
probabilities = torch.sigmoid(networks_logits)
pred_mean = torch.mean(probabilities)
pred_std = torch.std(probabilities)
return pred_mean, pred_std
def save_model(networks, dir):
"""Saves all models in a list to the given directory.
It creates a subdirectory called "models" in `dir`"""
save_dir = os.path.join(dir, "models")
if not os.path.exists(save_dir):
os.makedirs(save_dir)
for idx, net in enumerate(networks):
torch.save(net.state_dict(), os.path.join(save_dir, "net" + str(idx)+".pth"))
def load_model(dir):
"""
Loads models
:param dir: directory to load the models from
:return: a list of all the models in the directory
"""
networks = []
for filename in os.listdir(dir):
net = Net()
net.load_state_dict(torch.load(os.path.join(dir, filename)))
net.train(True)
net.cuda()
networks.append(net)
return networks
def all_subdirs_of(dir='.'):
"""returns the path list of all the subdirectories of the directory `dir`"""
result = []
for d in os.listdir(dir):
bd = os.path.join(dir, d)
if os.path.isdir(bd):
result.append(bd)
return result
def print_metrics(epoch, metrics):
print("\n[Epoch: {:} loss: {:.4f} | acc: {:.4f} | vloss: {:.4f} | vadjloss: {:.4f} | vacc: {:.4f} | vacc_m: {:.4f} ] ".format(
epoch, metrics[0], metrics[1], metrics[2], metrics[3], metrics[4], metrics[5]))