-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
144 lines (135 loc) · 6.69 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import numpy as np
import pandas as pd
import torch
from torch.autograd import Variable
from torch.optim import Adam
from torch.utils.data import DataLoader
from torchsample import transforms
from tqdm import tqdm
from models import Net
from utils import ScalarEncoder, accuracy, AverageMeter, make_dataset, save_model, print_metrics
from logger import Logger
from sklearn.model_selection import KFold
data = pd.read_json("data/train.json")
data["band_1"] = data["band_1"].apply(lambda x: np.array(x).reshape(75, 75))
data["band_2"] = data["band_2"].apply(lambda x: np.array(x).reshape(75, 75))
data["inc_angle"] = pd.to_numeric(data["inc_angle"], errors="coerce")
# Augmentation
affine_transforms = transforms.RandomAffine(rotation_range=None, translation_range=0.1, zoom_range=(0.95, 1.05))
rand_flip = transforms.RandomFlip(h=True, v=False)
std_normalize = transforms.StdNormalize()
my_transforms = transforms.Compose([rand_flip, std_normalize])
# scalar encoder for incident angles
encoder = ScalarEncoder(100, 30, 45)
# using folding to create 5 train-validation sets to train 5 networks
kf = KFold(n_splits=5, shuffle=True, random_state=100)
kfold_datasets = []
networks = []
optimizers = []
for train_index, val_index in kf.split(data):
train_dataset = make_dataset(data.iloc[train_index], encoder, my_transforms)
val_dataset = make_dataset(data.iloc[val_index], encoder, my_transforms)
kfold_datasets.append({"train": train_dataset, "val": val_dataset})
# A new net for each train-validation dataset
networks.append(Net().cuda())
optimizers.append(Adam(networks[-1].parameters(), lr=0.0005, weight_decay=0.0002))
# Train
criterion = torch.nn.BCEWithLogitsLoss()
val_criterion = torch.nn.BCELoss()
logger = Logger("./logs")
logger.text_log((str(networks), str(optimizers), str(criterion)), "model_description.txt")
def fit(train, val, batch_size, net, optimizer):
"""
Runs one epoch on the `net` using the `optimizer`
:param train: training dataset
:param val: validation dataset
:param batch_size: batch size
:param net: the model to train
:param optimizer: the optimizer to use on the model
:return: accuracy and loss performance metrics for training and validation
"""
print("train on {} images validate on {} images".format(len(train), len(val)))
net.train()
train_loader = DataLoader(train, batch_size=batch_size, shuffle=True)
val_loader = DataLoader(val, batch_size=batch_size, shuffle=False)
# creating AverageMeters to keep track of the metrics
running_loss = AverageMeter()
running_accuracy = AverageMeter()
val_loss_meter = AverageMeter()
val_loss_adjusted_meter = AverageMeter()
val_acc_meter = AverageMeter()
val_acc_mean_meter = AverageMeter()
pbar = tqdm(train_loader, total=len(train_loader))
for data_target in pbar:
data_var_img, target_var = Variable(data_target[0][0].float().cuda()), Variable(data_target[0][1].float().cuda())
data_var_angle = Variable(data_target[1].float().cuda())
output = torch.squeeze(net(data_var_img, data_var_angle))
loss = criterion(output, target_var)
acc = accuracy(target_var.data, output.data)
running_loss.update(loss.data[0])
running_accuracy.update(acc)
pbar.set_description("[ loss: {:.4f} | acc: {:.4f} ] ".format(running_loss.avg, running_accuracy.avg))
optimizer.zero_grad()
loss.backward()
optimizer.step()
for val_data_target in val_loader:
# `trials` is the number of times one sample is run through the model.
# This combined with dropout gives an idea about confidence of the model about its prediction.
trials = 10
current_batch_size = val_data_target[0][0].size()[0] # Because last batch can have a different size
# wrapping tensors in autograd variables
val_img_var = Variable(val_data_target[0][0].float().cuda())
val_target_var = Variable(val_data_target[0][1].float().cuda())
val_angle_var = Variable(val_data_target[1].float().cuda())
# Forward pass
output_logits = torch.squeeze(net(val_img_var, val_angle_var, trials=trials))
prob_out = torch.sigmoid(output_logits)
prob_out = prob_out.view(current_batch_size, trials)
# Taking mean and std of trails for each sample
prob_out_mean = torch.mean(prob_out, 1)
prob_out_std = torch.std(prob_out, 1)
# Adjusting the mean probability of trials according to their std.
# As std increases, the ceiling is lowered and floor is raised.
# std=0 means floor and ceiling are untouched. std=0.5 floor and ceiling are both at 0.5
prob_out_adjusted = (1 - 2 * prob_out_std)*(prob_out_mean - 0.5) + 0.5
# prob_out_adjusted = torch.min(torch.max(prob_out_adjusted, Variable(torch.cuda.FloatTensor([0.01]))),
# Variable(torch.cuda.FloatTensor([0.99])))
# Recording loss and accuracy metrics for `logger`
val_loss = val_criterion(prob_out_mean, val_target_var)
val_loss_adjusted = val_criterion(prob_out_adjusted, val_target_var)
val_acc = accuracy(val_target_var.data, prob_out_mean.data)
val_acc_mean = accuracy(val_target_var.data, prob_out_adjusted.data)
val_loss_meter.update(val_loss.data[0])
val_loss_adjusted_meter.update(val_loss_adjusted.data[0])
val_acc_meter.update(val_acc)
val_acc_mean_meter.update(val_acc_mean)
return [running_loss.avg, running_accuracy.avg, val_loss_meter.avg, val_loss_adjusted_meter.avg,\
val_acc_meter.avg, val_acc_mean_meter.avg]
prev_loss = 10
patience = 20
for epoch in tqdm(range(150)):
metrics = []
for i in range(len(networks)):
metrics.append(fit(kfold_datasets[i]["train"], kfold_datasets[i]["val"], 32, networks[i], optimizers[i]))
metrics_avg = np.mean(np.array(metrics), 0)
print_metrics(epoch+1, metrics_avg)
# update patience for early stopping
if prev_loss > metrics_avg[3]:
prev_loss = metrics_avg[3]
patience = min(patience + 1, 20)
else:
patience -= 1
print("Patience: ", patience)
# creating summaries for TensorBoard
logger.scalar_summary("loss", metrics_avg[0], epoch + 1)
logger.scalar_summary("vloss", metrics_avg[2], epoch + 1)
logger.scalar_summary("accuracy", metrics_avg[1], epoch + 1)
logger.scalar_summary("vloss-adjusted", metrics_avg[3], epoch + 1)
logger.scalar_summary("v-accuracy", metrics_avg[4], epoch + 1)
logger.scalar_summary("v-accuracy-adjusted", metrics_avg[5], epoch + 1)
print("Epoch: ", epoch + 1)
if patience == 0:
# Early stopping
print("Saving model and Eearly stopping at epoch:", epoch)
break
save_model(networks, logger.dir)