Skip to content
This repository has been archived by the owner on Oct 8, 2024. It is now read-only.

Skin Lesion Detector using HAM10000 dataset with Chainer / ChainerCV

License

Notifications You must be signed in to change notification settings

shunk031/chainer-skin-lesion-detector

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Chainer Skin Lesion Detector

MIT

Skin Lesion Detector using HAM10000 dataset with Chainer

Requirements

  • Python 3.6
  • Chainer 5.0
  • ChainerCV 0.11
  • cupy-cuda90
  • opencv 3.4
$ pip install -r requirements.txt

Setup environment using Docker

$ docker build -t chainer-skin-lesion-detector .
$ docker run --rm -it -v $(pwd):/chainer-skin-lesion-detector --runtime nvidia --name chainer-skin-lesion-detector-dev chainer-skin-lesion-detector /bin/bash

Directory architecture

.
├── data
│   ├── ISIC2018_Task1-2_Training_Input
│   ├── ISIC2018_Task1_Training_GroundTruth
│   ├── preprocessed
│   │   ├── ground_truth
│   │   └── input
│   └── xml
└── src
    ├── models
    │
    ├── notebooks
    │
    ├── result
    └── util

Download dataset

Preprocess

  • Re-scale image and ground truth
  • Make bounding box from ground truth of segmentation image
  • Create VOC format based label to data/xml directory
$ python make_dataset.py --loaderjob 4

An example of annotation data with a bounding box from the ground truth of segmentation using ISIC2018 task1 dataset:

Train

  • You can specify model, number of batch size, number of epoch, GPU ID and number of parallel data loading process.
$ python main.py --model ssd300 --batchsize 32 --epoch 30 --gpu 0 --loaderjob 4

Evaluation

Example of model prediction

Reference

Releases

No releases published

Packages

No packages published