-
Notifications
You must be signed in to change notification settings - Fork 435
/
Copy pathchat.py
40 lines (30 loc) · 940 Bytes
/
chat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 07 09:11:32 2017
@author: Shreyans
"""
import os
from scipy import spatial
import numpy as np
import gensim
import nltk
from keras.models import load_model
import theano
theano.config.optimizer="None"
model=load_model('LSTM5000.h5')
mod = gensim.models.Word2Vec.load('word2vec.bin');
while(True):
x=raw_input("Enter the message:");
sentend=np.ones((300L,),dtype=np.float32)
sent=nltk.word_tokenize(x.lower())
sentvec = [mod[w] for w in sent if w in mod.vocab]
sentvec[14:]=[]
sentvec.append(sentend)
if len(sentvec)<15:
for i in range(15-len(sentvec)):
sentvec.append(sentend)
sentvec=np.array([sentvec])
predictions = model.predict(sentvec)
outputlist=[mod.most_similar([predictions[0][i]])[0][0] for i in range(15)]
output=' '.join(outputlist)
print output