forked from defog-ai/sql-eval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mistral_runner.py
227 lines (203 loc) · 7.28 KB
/
mistral_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from concurrent.futures import ThreadPoolExecutor, as_completed
import os
from time import time
from typing import Optional
from mistralai.client import MistralClient
from mistralai.models.chat_completion import ChatMessage
import pandas as pd
from tqdm import tqdm
from eval.eval import compare_query_results
from utils.creds import db_creds_all
from utils.pruning import prune_metadata_str
from utils.questions import prepare_questions_df
from utils.reporting import upload_results
api_key = os.environ.get("MISTRAL_API_KEY")
client = MistralClient(api_key=api_key)
def generate_prompt(
prompt_file,
question,
db_name,
instructions="",
k_shot_prompt="",
glossary="",
table_metadata_string="",
prev_invalid_sql="",
prev_error_msg="",
public_data=True,
columns_to_keep=20,
shuffle=True,
):
with open(prompt_file, "r") as f:
prompt = f.read()
# Check that System and User prompts are in the prompt file
if "System:" not in prompt or "User:" not in prompt:
raise ValueError("Invalid prompt file. Please use prompt_mistral.md")
sys_prompt = prompt.split("System:")[1].split("User:")[0].strip()
user_prompt = prompt.split("User:")[1].strip()
question_instructions = question + " " + instructions
if table_metadata_string == "":
pruned_metadata_ddl, join_str = prune_metadata_str(
question_instructions, db_name, public_data, columns_to_keep, shuffle
)
pruned_metadata_str = pruned_metadata_ddl + join_str
else:
pruned_metadata_str = table_metadata_string
user_prompt = user_prompt.format(
user_question=question,
instructions=instructions,
table_metadata_string=pruned_metadata_str,
k_shot_prompt=k_shot_prompt,
glossary=glossary,
prev_invalid_sql=prev_invalid_sql,
prev_error_msg=prev_error_msg,
)
messages = [
ChatMessage(
role="system",
content=sys_prompt,
),
ChatMessage(
role="user",
content=user_prompt,
),
]
return messages
def process_row(row, model, args):
start_time = time()
chat_response = client.chat(
model=model,
messages=row["prompt"],
temperature=0,
max_tokens=600,
)
end_time = time()
generated_query = chat_response.choices[0].message.content
try:
# replace all backslashes with empty string
generated_query = generated_query.replace("\\", "")
generated_query = generated_query.split(";")[0].split("```sql")[-1].strip()
generated_query = [i for i in generated_query.split("```") if i.strip() != ""][
0
] + ";"
except Exception as e:
print(e)
generated_query = chat_response.choices[0].message.content
row["generated_query"] = generated_query
row["latency_seconds"] = end_time - start_time
golden_query = row["query"]
db_name = row["db_name"]
db_type = row["db_type"]
question = row["question"]
query_category = row["query_category"]
table_metadata_string = row["table_metadata_string"]
exact_match = correct = 0
try:
exact_match, correct = compare_query_results(
query_gold=golden_query,
query_gen=generated_query,
db_name=db_name,
db_type=db_type,
db_creds=db_creds_all[row["db_type"]],
question=question,
query_category=query_category,
table_metadata_string=table_metadata_string,
decimal_points=args.decimal_points,
)
row["exact_match"] = int(exact_match)
row["correct"] = int(correct)
row["error_msg"] = ""
except Exception as e:
row["error_db_exec"] = 1
row["error_msg"] = f"QUERY EXECUTION ERROR: {e}"
return row
def run_mistral_eval(args):
# get params from args
questions_file_list = args.questions_file
prompt_file_list = args.prompt_file
num_questions = args.num_questions
public_data = not args.use_private_data
model = args.model
output_file_list = args.output_file
k_shot = args.k_shot
max_workers = args.parallel_threads
db_type = args.db_type
cot_table_alias = args.cot_table_alias
for questions_file, prompt_file, output_file in zip(
questions_file_list, prompt_file_list, output_file_list
):
print(f"Using prompt file {prompt_file}")
# get questions
print("Preparing questions...")
print(
f"Using {'all' if num_questions is None else num_questions} question(s) from {questions_file}"
)
df = prepare_questions_df(
questions_file, db_type, num_questions, k_shot, cot_table_alias
)
# create a prompt for each question
df["prompt"] = df.apply(
lambda row: generate_prompt(
prompt_file,
row["question"],
row["db_name"],
row["db_type"],
row["instructions"],
row["k_shot_prompt"],
row["glossary"],
row["table_metadata_string"],
row["prev_invalid_sql"],
row["prev_error_msg"],
row["question_0"],
row["query_0"],
row["question_1"],
row["query_1"],
row["cot_instructions"],
row["cot_pregen"],
public_data,
args.num_columns,
args.shuffle_metadata,
),
axis=1,
)
total_tried = 0
total_correct = 0
output_rows = []
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = []
for row in df.to_dict("records"):
futures.append(executor.submit(process_row, row, model, args))
with tqdm(as_completed(futures), total=len(futures)) as pbar:
for f in pbar:
row = f.result()
output_rows.append(row)
if row["correct"]:
total_correct += 1
total_tried += 1
pbar.update(1)
pbar.set_description(
f"Correct so far: {total_correct}/{total_tried} ({100*total_correct/total_tried:.2f}%)"
)
output_df = pd.DataFrame(output_rows)
del output_df["prompt"]
print(output_df.groupby("query_category")[["correct", "error_db_exec"]].mean())
output_df = output_df.sort_values(by=["db_name", "query_category", "question"])
# get directory of output_file and create if not exist
output_dir = os.path.dirname(output_file)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
try:
output_df.to_csv(output_file, index=False, float_format="%.2f")
except:
output_df.to_pickle(output_file)
results = output_df.to_dict("records")
# upload results
with open(prompt_file, "r") as f:
prompt = f.read()
if args.upload_url is not None:
upload_results(
results=results,
url=args.upload_url,
runner_type="mistral_runner",
prompt=prompt,
args=args,
)