forked from defog-ai/sql-eval
-
Notifications
You must be signed in to change notification settings - Fork 0
/
bedrock_runner.py
177 lines (158 loc) · 5.73 KB
/
bedrock_runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import boto3
import json
import os
from concurrent.futures import ThreadPoolExecutor, as_completed
from typing import Optional
from eval.eval import compare_query_results
import pandas as pd
from utils.gen_prompt import generate_prompt
from utils.questions import prepare_questions_df
from utils.creds import db_creds_all
from tqdm import tqdm
from time import time
from utils.reporting import upload_results
bedrock = boto3.client(service_name="bedrock-runtime")
def process_row(row, model_id, decimal_points):
start_time = time()
body = json.dumps(
{
"prompt": row["prompt"],
"max_gen_len": 600,
"temperature": 0,
"top_p": 1,
}
)
accept = "application/json"
contentType = "application/json"
response = bedrock.invoke_model(
body=body, modelId=model_id, accept=accept, contentType=contentType
)
model_response = json.loads(response["body"].read())
generated_query = model_response["generation"]
end_time = time()
generated_query = (
generated_query.split("```sql")[-1].split("```")[0].split(";")[0].strip() + ";"
)
row["generated_query"] = generated_query
row["latency_seconds"] = end_time - start_time
row["tokens_used"] = None
golden_query = row["query"]
db_name = row["db_name"]
db_type = row["db_type"]
question = row["question"]
query_category = row["query_category"]
table_metadata_string = row["table_metadata_string"]
exact_match = correct = 0
try:
exact_match, correct = compare_query_results(
query_gold=golden_query,
query_gen=generated_query,
db_name=db_name,
db_type=db_type,
db_creds=db_creds_all[row["db_type"]],
question=question,
query_category=query_category,
table_metadata_string=table_metadata_string,
decimal_points=decimal_points,
)
row["exact_match"] = int(exact_match)
row["correct"] = int(correct)
row["error_msg"] = ""
except Exception as e:
row["error_db_exec"] = 1
row["error_msg"] = f"QUERY EXECUTION ERROR: {e}"
return row
def run_bedrock_eval(args):
# get params from args
questions_file_list = args.questions_file
prompt_file_list = args.prompt_file
num_questions = args.num_questions
public_data = not args.use_private_data
output_file_list = args.output_file
k_shot = args.k_shot
max_workers = args.parallel_threads
db_type = args.db_type
decimal_points = args.decimal_points
model_id = args.model
cot_table_alias = args.cot_table_alias
for questions_file, prompt_file, output_file in zip(
questions_file_list, prompt_file_list, output_file_list
):
print(f"Using prompt file {prompt_file}")
# get questions
print("Preparing questions...")
print(
f"Using {'all' if num_questions is None else num_questions} question(s) from {questions_file}"
)
df = prepare_questions_df(
questions_file, db_type, num_questions, k_shot, cot_table_alias
)
# create a prompt for each question
df["prompt"] = df.apply(
lambda row: generate_prompt(
prompt_file,
row["question"],
row["db_name"],
row["db_type"],
row["instructions"],
row["k_shot_prompt"],
row["glossary"],
row["table_metadata_string"],
row["prev_invalid_sql"],
row["prev_error_msg"],
row["question_0"],
row["query_0"],
row["question_1"],
row["query_1"],
row["cot_instructions"],
row["cot_pregen"],
public_data,
args.num_columns,
args.shuffle_metadata,
),
axis=1,
)
total_tried = 0
total_correct = 0
output_rows = []
with ThreadPoolExecutor(max_workers=max_workers) as executor:
futures = []
for row in df.to_dict("records"):
futures.append(
executor.submit(process_row, row, model_id, decimal_points)
)
with tqdm(as_completed(futures), total=len(futures)) as pbar:
for f in pbar:
row = f.result()
output_rows.append(row)
if row["correct"]:
total_correct += 1
total_tried += 1
pbar.update(1)
pbar.set_description(
f"Correct so far: {total_correct}/{total_tried} ({100*total_correct/total_tried:.2f}%)"
)
output_df = pd.DataFrame(output_rows)
del output_df["prompt"]
print(output_df.groupby("query_category")[["correct", "error_db_exec"]].mean())
output_df = output_df.sort_values(by=["db_name", "query_category", "question"])
# get directory of output_file and create if not exist
output_dir = os.path.dirname(output_file)
if not os.path.exists(output_dir):
os.makedirs(output_dir)
try:
output_df.to_csv(output_file, index=False, float_format="%.2f")
except:
output_df.to_pickle(output_file)
results = output_df.to_dict("records")
# upload results
with open(prompt_file, "r") as f:
prompt = f.read()
if args.upload_url is not None:
upload_results(
results=results,
url=args.upload_url,
runner_type="api_runner",
prompt=prompt,
args=args,
)