-
Notifications
You must be signed in to change notification settings - Fork 0
/
dough_fusion_attention_transition.py
231 lines (189 loc) · 9.86 KB
/
dough_fusion_attention_transition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from dataset.dough_dataset import DoughDataset, DoughDataset_Pair
from dataset.dough_dataset import get_flow_feature_dict, get_rgb_feature_dict
from common import train, test, save_best_result
import os
from os.path import join, isdir, isfile, exists
import argparse
import csv
parser = argparse.ArgumentParser()
parser.add_argument("--model", type=str, default='full',
choices=['full', 'only_x', 'only_htop', 'fc_att', 'no_att', 'cbam', 'sca', 'video_lstm', 'visual'])
parser.add_argument("--feature_type", type=str, default='resnet101_conv5', choices=['resnet101_conv5', 'resnet101_conv4'])
parser.add_argument("--epoch_num", type=int, default=70)
parser.add_argument("--split_index", type=int, default=0, choices=[0,1,2,3,4])
parser.add_argument("--label", type=str, default='')
args = parser.parse_args()
'''
class model (nn.Module):
def __init__ (self, feature_size, num_seg):
super(model, self).__init__()
self.f_size = feature_size
self.num_seg = num_seg
self.x_size = 256
self.pre_conv1 = nn.Conv2d(2*self.f_size, 512, (2,2), stride=2)
self.pre_conv2 = nn.Conv2d(512, self.x_size, (1,1))
self.x_avgpool = nn.AvgPool2d(7)
self.x_maxpool = nn.MaxPool2d(7)
self.rnn_att_size = 128
self.rnn_top_size = 128
self.rnn_top = nn.GRUCell(self.x_size, self.rnn_top_size)
for param in self.rnn_top.parameters():
if param.dim() > 1:
torch.nn.init.orthogonal_(param)
self.rnn_att = nn.GRUCell(self.x_size+self.rnn_top_size, self.rnn_att_size)
for param in self.rnn_att.parameters():
if param.dim() > 1:
torch.nn.init.orthogonal_(param)
self.a_size = 32
self.xa_fc = nn.Linear(self.x_size, self.a_size, bias=True)
self.ha_fc = nn.Linear(self.rnn_att_size, self.a_size, bias=True)
self.a_fc = nn.Linear(self.a_size, 1, bias=False)
self.score_fc = nn.Linear(self.rnn_top_size, 1, bias=True)
self.x_ln = nn.LayerNorm(self.x_size)
self.h_ln = nn.LayerNorm(self.rnn_top_size)
self.relu = nn.ReLU()
self.tanh = nn.Tanh()
self.sigmoid = nn.Sigmoid()
self.softmax = nn.Softmax(1)
self.dropout = nn.Dropout(p=0.1)
# video_featmaps: batch_size x seq_len x D x w x h
def forward (self, video_tensor):
batch_size = video_tensor.shape[0]
seq_len = video_tensor.shape[1]
video_soft_att = []
h_top = torch.randn(batch_size, self.rnn_top_size).to(video_tensor.device)
h_att = torch.randn(batch_size, self.rnn_att_size).to(video_tensor.device)
for frame_idx in range(seq_len):
featmap = video_tensor[:,frame_idx,:,:,:] #batch_size x 2D x 14 x 14
X = self.relu(self.pre_conv1(featmap)) #batch_size x C x 7 x 7
X = self.pre_conv2(X)
x_avg = self.x_avgpool(X).view(batch_size, -1) #batch_size x C
x_max = self.x_maxpool(X).view(batch_size, -1)
rnn_att_in = torch.cat((self.x_ln(x_avg+x_max),self.h_ln(h_top)), dim=1)
# rnn_att_in = torch.cat((x_avg+x_max, h_top), dim=1)
h_att = self.rnn_att(rnn_att_in, h_att) #batch_size x rnn_att_size
X_tmp = X.view(batch_size, self.x_size, -1).transpose(1,2) #batch_size x 49 x C
h_att_tmp = h_att.unsqueeze(1).expand(-1,X_tmp.size(1),-1) #batch_size x 49 x rnn_att_size
a = self.tanh(self.xa_fc(X_tmp)+self.ha_fc(h_att_tmp))
a = self.a_fc(a).unsqueeze(2) #batch_size x 49
alpha = self.softmax(a)
s_att = alpha.view(batch_size, 1, X.size(2), X.size(3))
video_soft_att.append(s_att)
X = X * s_att #batch_size x C x 7 x 7
rnn_top_in = torch.sum(X.view(batch_size, self.x_size, -1), dim=2) #batch_size x C x 7 x 7
h_top = self.rnn_top(rnn_top_in, h_top)
final_score = self.score_fc(h_top).squeeze(1)
video_soft_att = torch.stack(video_soft_att, dim=1) #batch_size x seq_len x 1 x 14 x 14
video_tmpr_att = torch.zeros(batch_size, seq_len)
return final_score, video_soft_att, video_tmpr_att
'''
def read_model(model_type, feature_type, num_seg):
feature_size = 2048 if feature_type == 'resnet101_conv5' else 1024
if model_type in ['full', 'only_x', 'only_htop', 'fc_att', 'no_att']:
from model_def.Spa_Att import model
return model(feature_size, num_seg, variant=model_type)
elif model_type in ['cbam']:
from model_def.CBAM_Att import model
return model(feature_size, num_seg)
elif model_type in ['sca']:
from model_def.SCA_Att import model
return model(feature_size, num_seg)
elif model_type in ['video_lstm']:
from model_def.VideoLSTM import model
return model(feature_size, num_seg)
elif model_type in ['visual']:
from model_def.Visual_Att import model
return model(feature_size, num_seg)
else:
raise Exception(f'Unsupport model type of {model_type}.')
def get_train_test_pairs_dict (annotation_dir, split_idx):
train_pairs_dict = {}
train_videos = set()
train_csv = join(annotation_dir, 'DoughRolling_train_'+format(split_idx, '01d')+'.csv')
with open(train_csv, 'r') as csvfile:
csvreader = csv.reader(csvfile)
for row_idx, row in enumerate(csvreader):
if row_idx != 0:
key = tuple((row[0], row[1]))
train_pairs_dict[key] = 1
train_videos.update(key)
csvfile.close()
test_pairs_dict = {}
test_videos = set()
test_csv = join(annotation_dir, 'DoughRolling_val_'+format(split_idx, '01d')+'.csv')
with open(test_csv, 'r') as csvfile:
csvreader = csv.reader(csvfile)
for row_idx, row in enumerate(csvreader):
if row_idx != 0:
key = tuple((row[0], row[1]))
test_pairs_dict[key] = 1
if key[0] not in train_videos:
test_videos.add(key[0])
if key[1] not in train_videos:
test_videos.add(key[1])
csvfile.close()
return train_pairs_dict, test_pairs_dict, train_videos, test_videos
if __name__ == "__main__":
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
dataset_dir = '../dataset/DoughRolling/DoughRolling_600x450'
annotation_dir = '../dataset/DoughRolling/DoughRolling_Annotation/splits'
video_name_list = os.listdir(dataset_dir)
video_rgb_feature_dict = get_rgb_feature_dict(dataset_dir, args.feature_type)
video_flow_feature_dict = get_flow_feature_dict(dataset_dir, args.feature_type)
best_acc_keeper = []
for split_idx in range(1, 5):
print("Split: "+format(split_idx, '01d'))
train_pairs_dict, test_pairs_dict, train_videos, test_videos = get_train_test_pairs_dict(annotation_dir, split_idx)
num_seg = 25
dataset_train = DoughDataset_Pair('fusion', video_rgb_feature_dict, video_flow_feature_dict,
train_pairs_dict, seg_sample=num_seg)
dataloader_train = DataLoader(dataset_train, batch_size=16, shuffle=True)
dataset_test = DoughDataset('fusion', video_rgb_feature_dict, video_flow_feature_dict,
video_name_list, seg_sample=num_seg)
dataloader_test = DataLoader(dataset_test, batch_size=1, shuffle=False)
model_ins = read_model(args.model, args.feature_type, num_seg)
save_label = f'DoughRolling/{args.model}/{split_idx:01d}'
best_acc = 0.0
if args.continue_train:
ckpt_dir = join('checkpoints', save_label,
'best_checkpoint.pth.tar')
if exists(checkpoint):
checkpoint = torch.load(ckpt_dir)
model_ins.load_state_dict(checkpoint['state_dict'])
best_acc = checkpoint['best_acc']
print("Start from previous checkpoint, with rank_cor: {:.4f}".format(
checkpoint['best_acc']))
else:
print("No previous checkpoint. \nStart from scratch.")
else:
print("Start from scratch.")
model_ins.to(device)
criterion = nn.MarginRankingLoss(margin=0.5)
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model_ins.parameters()),
lr=5e-6, weight_decay=0, amsgrad=False)
# optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, model_ins.parameters()),
# lr=1e-3, momentum=0.9, weight_decay=1e-3)
# scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=2)
min_loss = 1.0
no_imprv = 0
for epoch in range(args.epoch_num):
train(dataloader_train, model_ins, criterion, optimizer, epoch, device)
epoch_loss, epoch_acc = test(dataloader_test, test_pairs_dict, model_ins, criterion, epoch, device)
if epoch_acc >= best_acc:
best_acc = epoch_acc
save_best_result(dataloader_test, test_videos,
model_ins, device, best_acc, save_label)
if epoch_loss <= min_loss:
min_loss = epoch_loss
else:
no_imprv += 1
print('Best acc: {:.3f}'.format(best_acc))
# if no_imprv > 3:
# break
best_acc_keeper.append(best_acc)
for split_idx, best_acc in enumerate(best_acc_keeper):
print(f'Split: {split_idx+1}, {best_acc:.4f}')
print('Avg:', '{:.4f}'.format(sum(best_acc_keeper)/4))