forked from INM-6/human-multi-area-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfigure_firing_rate_distribution.py
81 lines (63 loc) · 3.15 KB
/
figure_firing_rate_distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import os
from os.path import join as path_join
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
def plot_firing_rate_distribution(filepath, figname):
"""
Plot firing rate distribution for each population across different areas.
Parameters
----------
filepath : str
Path to the directory containing the pickle files.
figname : str
Name of the output figure.
"""
# Read the rates_individual pickle file
rates_individual = pd.read_pickle(path_join(filepath, 'rates_individual.pkl'))
# Plot 8 figures in a 4x2 grid the rates of each population across areas
fig, ax = plt.subplots(4, 2, figsize=(5.63, 6), sharex=True, sharey=True) # Increase figure size for readability
row, col = 0, 0 # Initialize subplot counters
layer_labels = ['2/3', '4', '5', '6']
binsize = 0.5
for layer in rates_individual.index.get_level_values(1).unique():
for pop in rates_individual.index.get_level_values(2).unique():
# Initialize list to store firing rate distributions
rates_dist = []
# Calculate firing rate distribution for each area
for area in rates_individual.index.get_level_values(0).unique():
if (layer, pop) not in rates_individual[area]:
print('Skipping ' + area + ' ' + layer + ' ' + pop)
continue
else:
# Use logarithmic bins, but compute the histogram on log10 of the rates
vals, bins = np.histogram(np.log10(rates_individual[area, layer, pop]), bins=np.arange(-3, 5, binsize))
if np.sum(vals) > 0:
vals = vals / (binsize * np.sum(vals))
rates_dist.append(vals)
# Calculate mean and standard deviation of firing rate distributions
mean_rates_count = np.mean(rates_dist, axis=0)
std_rates_count = np.std(rates_dist, axis=0)
# Convert log10 bins to actual firing rates (10^bins)
actual_bins = 10**bins[:-1]
ax[row, col].plot(actual_bins, mean_rates_count, linewidth=2, color='black')
ax[row, col].fill_between(actual_bins, mean_rates_count - std_rates_count, mean_rates_count + std_rates_count, alpha=0.5, color='black')
ax[row, col].set_title(layer_labels[row] + ' ' + pop)
# Set x-axis to logarithmic scale to represent firing rates correctly
ax[row, col].set_xscale('log')
ax[row, col].set_xlim(1e-3, 1e4) # Adjust limits as necessary for your data
# ax[row, col].set_ylim(-0.5, 1.6)
col += 1
if col >= 2:
col = 0
row += 1
# Add overall figure title
fig.supylabel('Density')
fig.supxlabel('Firing rate (spikes/s)')
fig.tight_layout()
fig.savefig(f'figures/{figname}.pdf')
# Set the filepath and figname
filepath = os.path.join(os.getcwd(), 'out/8c49a09f51f44fbb036531ce0719b5ba/4772f0b020c9f3310f4096a6db758343/')
figname = "figure_firing_rate_distribution_bestfit"
# Call the plot_firing_rate_distribution function
plot_firing_rate_distribution(filepath, figname)