forked from x4nth055/pythoncode-tutorials
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate.py
70 lines (60 loc) · 2.03 KB
/
generate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import numpy as np
import pickle
import tqdm
from keras.models import Sequential
from keras.layers import Dense, LSTM, Dropout, Activation
from keras.callbacks import ModelCheckpoint
message = """
Please choose which model you want to generate text with:
1 - Alice's wonderland
2 - Python Code
"""
choice = int(input(message))
assert choice == 1 or choice == 2
if choice == 1:
char2int = pickle.load(open("data/wonderland-char2int.pickle", "rb"))
int2char = pickle.load(open("data/wonderland-int2char.pickle", "rb"))
elif choice == 2:
char2int = pickle.load(open("data/python-char2int.pickle", "rb"))
int2char = pickle.load(open("data/python-int2char.pickle", "rb"))
sequence_length = 100
n_unique_chars = len(char2int)
# building the model
model = Sequential([
LSTM(256, input_shape=(sequence_length, n_unique_chars), return_sequences=True),
Dropout(0.3),
LSTM(256),
Dense(n_unique_chars, activation="softmax"),
])
if choice == 1:
model.load_weights("results/wonderland-v2-0.75.h5")
elif choice == 2:
model.load_weights("results/python-v2-0.30.h5")
seed = ""
print("Enter the seed, enter q to quit, maximum 100 characters:")
while True:
result = input("")
if result.lower() == "q":
break
seed += f"{result}\n"
seed = seed.lower()
n_chars = int(input("Enter number of characters you want to generate: "))
# generate 400 characters
generated = ""
for i in tqdm.tqdm(range(n_chars), "Generating text"):
# make the input sequence
X = np.zeros((1, sequence_length, n_unique_chars))
for t, char in enumerate(seed):
X[0, (sequence_length - len(seed)) + t, char2int[char]] = 1
# predict the next character
predicted = model.predict(X, verbose=0)[0]
# converting the vector to an integer
next_index = np.argmax(predicted)
# converting the integer to a character
next_char = int2char[next_index]
# add the character to results
generated += next_char
# shift seed and the predicted character
seed = seed[1:] + next_char
print("Generated text:")
print(generated)