-
Notifications
You must be signed in to change notification settings - Fork 0
/
lusbir.py
412 lines (327 loc) · 16 KB
/
lusbir.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
"""This module provides lusbirs -- integer ranges characterized by a lower bound, upper bound, step, and base.
A lusbir represents the list of all numbers between the lower and upper bounds that are of the form
n * step + base
for some integer n. Lower and upper bounds can be any combination of inclusive and exclusive.
Numbers are ordered such that (a * step + base) comes before (b * step + base) if and only if a < b --
lusbirs with a positive step are in ascending order, and lusbirs with a negative step are in descending order.
"""
__all__ = ['Bound', 'BoundType', 'LusbTuple', 'Lusbir']
from collections.abc import Iterator, Sequence
from typing import Literal, NamedTuple, TypeAlias, final, overload
class Bound(NamedTuple):
"""A lower or upper bound in a lusbir."""
number: int
inclusive: bool
class LusbTuple(NamedTuple):
"""A tuple of the four pieces of information that characterize a lusbir.
Note that lusb tuples may have a step of 0, but lusbirs may not.
Lusb tuples with a step of 0 do not represent valid lusbirs.
"""
lbound: Bound
ubound: Bound
step: int
base: int
# region lusbir construction helper functions
def _lusb_tuple_to_range(lusb_tuple: LusbTuple, /) -> range:
"""Return a Python range that represents the same list as a lusbir with the given lusb tuple."""
(lb_num, lb_incl), (ub_num, ub_incl), step, base = lusb_tuple
if step > 0:
inclusive_start_bound = lb_num if lb_incl else lb_num + 1
exclusive_stop_bound = ub_num + 1 if ub_incl else ub_num
else:
inclusive_start_bound = ub_num if ub_incl else ub_num - 1
exclusive_stop_bound = lb_num - 1 if lb_incl else lb_num
# Let the "progress" of an integer x be the real number r such that x = r * step + base.
# Denoting the progress of the inclusive start bound with a
# and the progress of the exclusive stop bound with b,
# a number n with integer progress p is in the lusbir if and only if
# a <= p < b -- or, in other words, iff p >= a and not p >= b.
#
# The first number with integer progress p >= a is (ceil(a) * step + base);
# the first number with integer progress p >= b is (ceil(b) * step + base).
# These can be the start and stop values for `range`.
#
# (The progress of the stop value does not actually need to be an integer --
# in fact, the exclusive stop bound is a perfectly good stop value.
# However, using a number with integer progress for the stop value gives us the elegant property that
# the number of items in the range is exactly ((stop - start) / step),
# except in the special case where `stop` "comes before" `start`,
# in which case the range will be empty instead of containing a negative number of items.)
# #
start = _ceil_progress(inclusive_start_bound, step, base)
stop = _ceil_progress(exclusive_stop_bound, step, base)
return range(start, stop, step)
def _ceil_progress(x: int, step: int, base: int, /) -> int:
"""Expressing x as (r * step + base) for some real number r, return (ceil(r) * step + base)."""
# Derivation:
# x = r * step + base
# r = (x - base) / step
# ceil(r) = ceil((x - base) / step) = -((x - base) // -step)
# (ceil(a/b) = -(a // -b) -- https://stackoverflow.com/a/17511341)
# ceil(r) * step + base = -((x - base) // -step) * step + base
# #
return -((x - base) // -step) * step + base
# endregion
BoundType: TypeAlias = Literal['()', '(]', '[)', '[]']
"""All possible ways to specify lower and upper bound inclusivities in the standard lusbir constructor.
'()' -> both bounds exclusive
'(]' -> exclusive lower bound, inclusive upper bound
'[)' -> inclusive lower bound, exclusive upper bound; the default choice
'[]' -> both bounds inclusive
"""
_bound_type_to_inclusivities = {
'()': (False, False),
'(]': (False, True),
'[)': (True, False),
'[]': (True, True),
}
_inclusivities_to_bound_type = {incl: bt for bt, incl in _bound_type_to_inclusivities.items()}
@final # no guarantees that subclassing will work correctly
class Lusbir(Sequence):
"""An integer range characterized by a lower bound (lbound), upper bound (ubound), step, and base.
The lower and upper bounds consist of an integer numeric bound and an inclusivity.
The step and base are integers, and the step is nonzero.
A number x is in the lusbir if and only if:
- (numeric lower bound) <= x if the lower bound is inclusive;
(numeric lower bound) < x if the lower bound is exclusive
- x <= (numeric upper bound) if the upper bound is inclusive;
x < (numeric upper bound) if the upper bound is exclusive
- x is of the form (n * step + base) for some integer n
Every number in the lusbir appears only once.
Like Python ranges, lusbirs with a positive step are ordered from low to high
and lusbirs with a negative step are ordered from high to low.
Example: a lusbir with inclusive lower bound 0, exclusive upper bound 10, step 2, and base 1
represents the list of all numbers x such that 0 <= x < 10 and x is of the form 2n + 1 for some integer n --
or the list [1, 3, 5, 7, 9]. (Since the step is positive, the list is in ascending order.)
Example: a lusbir with exclusive lower bound 5, inclusive upper bound 55, step -10, and base 5
represents the list of all numbers x such that 5 < x <= 55 and x is of the form -10n + 5 for some integer n --
or the list [55, 45, 35, 25, 15]. (Since the step is negative, the list is in descending order.)
(See the __init__ docstring for details on the standard constructor.)
"""
__slots__ = ['_range', '_lusb_tuple']
_range: range
_lusb_tuple: LusbTuple
# region constructors
@overload
def __init__(self, ub_num: int, /): pass
@overload
def __init__(self, lb_num: int, ub_num: int, step: int = 1, base: int = 0, /): pass
@overload
def __init__(self, bound_type: BoundType, lb_num: int, ub_num: int, step: int = 1, base: int = 0, /): pass
def __init__(self, /, *args):
"""Initialize this lusbir.
Parameters (see "Calling options" for how to specify them):
bound_type (str) - Specifies the inclusivities of the lower and upper bounds. One of the following options:
'()' -> both bounds exclusive
'(]' -> exclusive lower bound, inclusive upper bound
'[)' (default if not specified) -> inclusive lower bound, exclusive upper bound
'[]' -> both bounds inclusive
lb_num (int) - Numeric lower bound. Defaults to 0 if not specified.
ub_num (int) - Numeric upper bound. Must always be specified.
step (int) - Must be nonzero. Defaults to 1 if not specified.
base (int) - Defaults to 0 if not specified.
Calling options (distinguished by the number and types of arguments):
Lusbir(ub_num)
Lusbir(lb_num, ub_num[, step[, base]])
Lusbir(bound_type, lb_num, ub_num[, step[, base]])
If the step is 0, or the bound type is not one of the outlined options, raise a ValueError.
>>> list(Lusbir(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(Lusbir(10, 20))
[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
>>> list(Lusbir(10, 20, 2))
[10, 12, 14, 16, 18]
>>> list(Lusbir(10, 20, 2, 1))
[11, 13, 15, 17, 19]
>>> list(Lusbir('()', 0, 10))
[1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(Lusbir('(]', 0, 10))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list(Lusbir('[)', 0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list(Lusbir('[]', 0, 10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list(Lusbir('(]', 0, 10, 2))
[2, 4, 6, 8, 10]
>>> list(Lusbir('(]', 0, 10, 2, 1))
[1, 3, 5, 7, 9]
>>> list(Lusbir(-20, -10))
[-20, -19, -18, -17, -16, -15, -14, -13, -12, -11]
>>> list(Lusbir('(]', -20, -10))
[-19, -18, -17, -16, -15, -14, -13, -12, -11, -10]
>>> list(Lusbir(0, 30, 3, 2))
[2, 5, 8, 11, 14, 17, 20, 23, 26, 29]
>>> list(Lusbir(0, 30, -3, 2)) # negating the step always reverses the represented list
[29, 26, 23, 20, 17, 14, 11, 8, 5, 2]
>>> list(Lusbir(-50, 50, 10, 9))
[-41, -31, -21, -11, -1, 9, 19, 29, 39, 49]
>>> list(Lusbir(-50, 50, 10, 1009)) # adding a multiple of the step to the base does not change anything
[-41, -31, -21, -11, -1, 9, 19, 29, 39, 49]
>>> list(Lusbir(-50, 50, 10, -1))
[-41, -31, -21, -11, -1, 9, 19, 29, 39, 49]
While Python ranges are based on a start value and a stop bound, lusbirs are based on lower and upper bounds.
>>> list(range(10, 0, -1))
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> list(Lusbir(10, 0, -1)) # bounds: 10 <= x < 0 -- never satisfied
[]
>>> list(Lusbir(0, 10, -1)) # bounds: 0 <= x < 10, or 10 > x >= 0
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
>>> list(Lusbir('(]', 0, 10, -1)) # bounds: 0 < x <= 10, or 10 >= x > 0
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1]
>>> list(range(5, 55, 10)) # 10n + 5 because the step is 10 and the start value is 5
[5, 15, 25, 35, 45]
>>> list(Lusbir(5, 55, 10)) # 10n + 0 because the step is 10 and the base is, by default, 0
[10, 20, 30, 40, 50]
>>> list(Lusbir(5, 55, 10, 5))
[5, 15, 25, 35, 45]
>>> list(Lusbir('(]', 5, 55, 10, 5))
[15, 25, 35, 45, 55]
>>> list(Lusbir('(]', 5, 55, -10, 5))
[55, 45, 35, 25, 15]
"""
match args:
case [int(ub_num)]:
lb_num = 0
lb_incl = True
ub_incl = False
other_args = []
case [int(lb_num), int(ub_num), *other_args]:
lb_incl = True
ub_incl = False
case [str(bound_type), int(lb_num), int(ub_num), *other_args]:
try:
lb_incl, ub_incl = _bound_type_to_inclusivities[bound_type]
except KeyError:
raise ValueError(f'invalid lusbir bound type: {repr(bound_type)}') from None
case _:
raise Lusbir._invalid_arguments_error(args)
match other_args:
case []:
step = 1
base = 0
case [int(step)]:
base = 0
case [int(step), int(base)]:
pass
case _:
raise Lusbir._invalid_arguments_error(args)
self._init_from_lusb_tuple(LusbTuple(Bound(lb_num, lb_incl), Bound(ub_num, ub_incl), step, base))
@staticmethod
def _invalid_arguments_error(args: tuple, /) -> TypeError:
arg_types = tuple(type(arg).__name__ for arg in args)
return TypeError(f'invalid lusbir arguments -- argument types received were: {arg_types}')
@classmethod
def from_lusb_tuple(cls, lusb_tuple: LusbTuple, /) -> 'Lusbir':
"""Alternative constructor. Construct the lusbir from a lusb tuple.
Raise a ValueError if the lusb tuple has a step of 0.
"""
lusbir = object.__new__(cls)
lusbir._init_from_lusb_tuple(lusb_tuple)
return lusbir
def _init_from_lusb_tuple(self, lusb_tuple: LusbTuple, /) -> None:
if lusb_tuple.step == 0:
raise ValueError('lusbir step cannot be 0')
self._range = _lusb_tuple_to_range(lusb_tuple)
self._lusb_tuple = lusb_tuple
# endregion
# region original functionality
@property
def lbound(self, /) -> Bound:
"""The lower bound of this lusbir. A named tuple `Bound(number: int, inclusive: bool)`."""
return self._lusb_tuple.lbound
@property
def ubound(self, /) -> Bound:
"""The upper bound of this lusbir. A named tuple `Bound(number: int, inclusive: bool)`."""
return self._lusb_tuple.ubound
@property
def step(self, /) -> int:
"""The step of this lusbir. A nonzero integer."""
return self._lusb_tuple.step
@property
def base(self, /) -> int:
"""The base of this lusbir. An integer."""
return self._lusb_tuple.base
@property
def lusb_tuple(self, /) -> LusbTuple:
"""The four pieces of information that characterize this lusbir, in the form of a lusb tuple."""
return self._lusb_tuple
def __eq__(self, other, /) -> bool:
"""If `other` is a lusbir, return whether it represents the same list as this lusbir."""
if isinstance(other, Lusbir):
return self._range == other._range
return NotImplemented
@overload
def __getitem__(self, index: int, /) -> int: pass
@overload
def __getitem__(self, slice_: slice, /) -> 'Lusbir': pass
def __getitem__(self, subscript, /):
"""Return self[subscript], according to standard indexing and slicing conventions for sequences.
The return value is an integer when indexing and another lusbir when slicing.
"""
if isinstance(subscript, int):
try:
return self._range[subscript]
except IndexError:
raise IndexError(f'lusbir index out of range: {subscript}') from None
if isinstance(subscript, slice):
return Lusbir.from_range(self._range[subscript])
raise TypeError(f'lusbir subscripts must be integers or slices, not {repr(type(subscript).__name__)}')
def __hash__(self, /) -> int:
"""Return an appropriate hash for this lusbir.
Two lusbirs that represent the same list will always hash to the same value,
even if they have different lusb tuples.
"""
# Just return the hash of the underlying Python range --
# lusbirs and Python ranges probably won't be used in the same places in code anyway.
return hash(self._range)
def __iter__(self, /) -> Iterator[int]:
"""Return an iterator such that `list(self)` evaluates to the list represented by this lusbir."""
return iter(self._range)
def __repr__(self, /) -> str:
"""Return a string s such that eval(s).lusb_tuple == self.lusb_tuple."""
# Format: `Lusbir(bound_type, lb_num, ub_num[, step[, base]])`;
# `step` and `base` are only included if they are different from their default values.
(lb_num, lb_incl), (ub_num, ub_incl), step, base = self._lusb_tuple
bound_type = _inclusivities_to_bound_type[lb_incl, ub_incl]
if base != 0:
return f'Lusbir({repr(bound_type)}, {lb_num}, {ub_num}, {step}, {base})'
elif step != 1:
return f'Lusbir({repr(bound_type)}, {lb_num}, {ub_num}, {step})'
else:
return f'Lusbir({repr(bound_type)}, {lb_num}, {ub_num})'
@staticmethod
def from_range(r: range, /) -> 'Lusbir':
"""Return a lusbir that represents the same list as the given Python range."""
if r.step > 0:
return Lusbir('[)', r.start, r.stop, r.step, r.start)
else:
return Lusbir('(]', r.stop, r.start, r.step, r.start)
def to_range(self, /) -> range:
"""Return a Python range that represents the same list as this lusbir."""
return self._range
# endregion
# region functionality from `range`
def __bool__(self, /) -> bool:
"""Return len(self) > 0."""
return bool(self._range)
def __contains__(self, x: int, /) -> bool:
"""Return x in self."""
return x in self._range
def __len__(self, /) -> int:
"""Return len(self)."""
return len(self._range)
def __reversed__(self, /) -> Iterator[int]:
"""Return a reverse iterator."""
return reversed(self._range)
def count(self, x: int, /) -> int:
"""Return the number of occurrences of x."""
return self._range.count(x)
def index(self, x: int, /) -> int: # noqa
"""Return the index of x.
Raise ValueError if x is not present.
"""
try:
return self._range.index(x)
except ValueError:
raise ValueError(f'lusbir does not contain {repr(x)}') from None
# endregion