Skip to content

Latest commit

 

History

History
152 lines (131 loc) · 7.18 KB

README.md

File metadata and controls

152 lines (131 loc) · 7.18 KB

Operating System Fingerprinting using ML Classifiers

The project is about fingerprinting operating systems using different multi-class classification algorithms. I tried to look into required features for OS fingerprinting and find accuracy of different classifiers based on different labeling (base OS platform, e.g., Windows vs OS versions, e.g., Win 7,8,10). The accuracy is almost 100% if labeled as base platform only (Windows, Ubuntu, macOS). However, the accuray is lower when labeled as the OS version (see below in the Ground Truth section).

Breaking Down PCAP files (MB)

To test with a small file, a large pcap file can be broken down to a small file using the following command

$ tcpdump -r old_file.pcap -w new_file.pcap -C 100

Convert PCAP to CSV

There are many ways to convert a PCAP file to a CSV file. The best way to do that is using tshark which is the command-line version of Wireshark In an Ubuntu machine, it can be installed using the following command

$ sudo apt install tshark

Now, convert the input pcap file to a CSV file as follows:

$ tshark -r input.pcap -T fields -E header=y -E separator=, -E quote=d -E occurrence=f \
-e ip.version -e ip.hdr_len -e ip.tos -e ip.id -e ip.flags -e ip.flags.rb -e ip.flags.df \ 
-e ip.flags.mf -e ip.frag_offset -e ip.ttl -e ip.proto -e ip.checksum -e ip.src -e ip.dst \ 
-e ip.len -e ip.dsfield -e tcp.srcport -e tcp.dstport -e tcp.seq -e tcp.ack -e tcp.len \ 
-e tcp.hdr_len -e tcp.flags -e tcp.flags.fin -e tcp.flags.syn -e tcp.flags.reset \ 
-e tcp.flags.push -e tcp.flags.ack -e tcp.flags.urg -e tcp.flags.cwr -e tcp.window_size \ 
-e tcp.checksum -e tcp.urgent_pointer -e tcp.options.mss_val > output.csv

Correction to previous version It's a lot better to consider traffic flow rather can considering each packet. Therefore, we filter only the first packet of a flow

$ tshark -r input.pcap -Y "tcp.flags.syn eq 1" -T fields -E header=y -E separator=, -E quote=d -E occurrence=f \
-e ip.version -e ip.hdr_len -e ip.tos -e ip.id -e ip.flags -e ip.flags.rb -e ip.flags.df \ 
-e ip.flags.mf -e ip.frag_offset -e ip.ttl -e ip.proto -e ip.checksum -e ip.src -e ip.dst \ 
-e ip.len -e ip.dsfield -e tcp.srcport -e tcp.dstport -e tcp.seq -e tcp.ack -e tcp.len \ 
-e tcp.hdr_len -e tcp.flags -e tcp.flags.fin -e tcp.flags.syn -e tcp.flags.reset \ 
-e tcp.flags.push -e tcp.flags.ack -e tcp.flags.urg -e tcp.flags.cwr -e tcp.window_size \ 
-e tcp.checksum -e tcp.urgent_pointer -e tcp.options.mss_val > output.csv

Note that, there are many other options I did not include in the CSV file. If more interested, you can check other options as well. For example, this article did the following for a different purpose.

$ tshark -r $1 -T fields -E header=y -E separator=, -E quote=d -E occurrence=f -e ip.src -e ip.dst -e ip.len -e ip.flags.df -e ip.flags.mf \
-e ip.fragment -e ip.fragment.count -e ip.fragments -e ip.ttl -e ip.proto -e tcp.window_size -e tcp.ack -e tcp.seq -e tcp.len -e tcp.stream -e tcp.urgent_pointer \
-e tcp.flags -e tcp.analysis.ack_rtt -e tcp.segments -e tcp.reassembled.length -e ssl.handshake -e ssl.record -e ssl.record.content_type -e ssl.handshake.cert_url.url_len \
-e ssl.handshake.certificate_length -e ssl.handshake.cert_type -e ssl.handshake.cert_type.type -e ssl.handshake.cert_type.types -e ssl.handshake.cert_type.types_len \
-e ssl.handshake.cert_types -e ssl.handshake.cert_types_count -e dtls.handshake.extension.len -e dtls.handshake.extension.type -e dtls.handshake.session_id \
-e dtls.handshake.session_id_length -e dtls.handshake.session_ticket_length -e dtls.handshake.sig_hash_alg_len -e dtls.handshake.sig_len -e dtls.handshake.version \
-e dtls.heartbeat_message.padding -e dtls.heartbeat_message.payload_length -e dtls.heartbeat_message.payload_length.invalid -e dtls.record.content_type -e dtls.record.content_type \
-e dtls.record.length -e dtls.record.sequence_number -e dtls.record.version -e dtls.change_cipher_spec -e dtls.fragment.count -e dtls.handshake.cert_type.types_len \
-e dtls.handshake.certificate_length -e dtls.handshake.certificates_length -e dtls.handshake.cipher_suites_length -e dtls.handshake.comp_methods_length -e dtls.handshake.exponent_len \
-e dtls.handshake.extension.len -e dtls.handshake.extensions_alpn_str -e dtls.handshake.extensions_alpn_str_len -e dtls.handshake.extensions_key_share_client_length \
-e http.request -e udp.port -e frame.time_relative -e frame.time_delta -e tcp.time_relative -e tcp.time_delta > $2

Run the File

Four options for the main.py file

  • -file : the input CSV file
  • -features : the column index of selected features in the new generated CSV file (labeled_dataset.csv)
  • -label : the label index of the new generated CSV file (labeled_dataset.csv)
  • -test : test size for dividing the data into train and test sizes

Now, the program can be run using the following command

$ python main.py -file thursday-100M-v2.csv -features 1,5,8,13,17,18,19,20,22,23,24,25,26,29 -label 32 -test 0.2 > report.txt

Classification Methods

The following multi-class classification algorithms have been used to train and test the dataset

  • Logistic Regression Classifier
  • K-Neighbor Classifier
  • SVM (Linear) Classifier
  • SVM (RBF) Classifier
  • Naive Bayes Classifier
  • Decision Tree Classifier
  • Random Forest Classifier

Feature Selection Algorithms

Features are selected based on the following feature ranking algorithms

  • Univariate Selection (ANOVA f-val, Chi-Squared)
  • Recursive Feature Elimination
  • Extra Tree Classifier for feature importance

Considered Features

  • ip.flags.df
  • ip.ttl
  • ip.len
  • tcp.seq
  • tcp.ack
  • tcp.len
  • tcp.hdr_len
  • tcp.flags.fin
  • tcp.flags.syn
  • tcp.flags.reset
  • tcp.flags.push
  • tcp.flags.ack
  • tcp.window_size

Used Dataset

A very small part of the CIC-IDS2017

Labeling Data (Ground Truth)

ip_dict = {
    '192.168.10.51': 'Ubuntu server 12',
    '192.168.10.19': 'Ubuntu 14.4',
    '192.168.10.17': 'Ubuntu 14.4',
    '192.168.10.16': 'Ubuntu 16.4',
    '192.168.10.12': 'Ubuntu 16.4',
     '192.168.10.9': 'Win 7',
     '192.168.10.5': 'Win 8.1',
     '192.168.10.8': 'Win Vista',
    '192.168.10.14': 'Win 10',
    '192.168.10.15': 'Win 10',
    '192.168.10.25': 'macOS'
}

Future Work

  • Tune the Classification Hyperparameters
  • Use DNN (MLP and LSTM) to classify
  • Use large Dataset
  • Improve Code Documentation

Help

  ____  _                 _          ____             
 / ___|| |__   __ _ _ __ | |_ ___   |  _ \ ___  _   _ 
 \___ \| '_ \ / _` | '_ \| __/ _ \  | |_) / _ \| | | |
  ___) | | | | (_| | | | | || (_) | |  _ < (_) | |_| |
 |____/|_| |_|\__,_|_| |_|\__\___/  |_| \_\___/ \__, |
                                                |___/ 

Created TextArt using patorjk.com