Skip to content

Latest commit

 

History

History
56 lines (39 loc) · 1.11 KB

File metadata and controls

56 lines (39 loc) · 1.11 KB

Summary:

This code allows one to do optimized parameter sweeps for Quantum Computing/Information experiments using systems integrated through Labber API

Use Cases:

graph LR
  B("class MeasurementOptimizer");
  D[Optimization Parameter];
  A[Input Parameter 1] ----> B;
  C[Input Parameter 2] ----> B;
  D ---> B;
  subgraph "MeasurementOptimizer.py"
  B--> E{Is the Optimization Parameter a Derived Quantity};
  E -->|Yes| F[Case 1];
  E -->|No| G[Case 2];
  F --> B;
  G --> B;
  end
Loading

Usage

The program would require the following inputs:

  • 2 parameters, their config. with Labber, and bounds to form the search space
  • 1 parameter, its qualifier (isDerivedQuant: bool), and associated config. to optimize over
  • hyper-parameters for optimization

Example:

from MeasurementOptimizer import *

MeasurementOptimizer()

To Do:

  • study James' code
    • methods to deal with generalized output optimization
    • obj code verification
    • save data
    • implement SNR optimization
  • test
    • toy
    • with system
  • document
  • 3 param opt.