Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

YOLO-x test results incoherent #122

Open
guillermodecelisrodriguez opened this issue Aug 26, 2024 · 1 comment
Open

YOLO-x test results incoherent #122

guillermodecelisrodriguez opened this issue Aug 26, 2024 · 1 comment
Assignees

Comments

@guillermodecelisrodriguez
Copy link

guillermodecelisrodriguez commented Aug 26, 2024

Thanks for the amazing job on your publication.

i am trying to replicate your results, but if I use the only yolo_x_model.pt that you uploaded to drive, the results from testing yolo dont make sense i dont know what i am missing.

Thanks in advance!

I am running >> ./det/yolox/tools/test_yolox.sh ./configs/yolox/bop_pbr/yolox_x_640_augCozyAAEhsv_ranger_30_epochs_ycbv_real_pbr_ycbv_bop_test.py 0 ./pretrained_models/yolox/yolox_x.pth

and i obtain the following results:

Per-category bbox AP:

category AP category AP category AP
002_master_chef_can 0.000 003_cracker_box 0.000 004_sugar_box 0.000
005_tomato_soup_can 0.000 006_mustard_bottle 0.000 007_tuna_fish_can 0.000
008_pudding_box 0.001 009_gelatin_box 0.000 010_potted_meat_can 0.241
011_banana 0.054 019_pitcher_base 0.021 021_bleach_cleanser 0.039
024_bowl 0.000 025_mug 21.278 035_power_drill 4.161
036_wood_block 0.000 037_scissors 0.000 040_large_marker 0.000
051_large_clamp 0.008 052_extra_large_clamp 0.000 061_foam_brick 0.032
@Rainbowend
Copy link
Collaborator

Rainbowend commented Dec 11, 2024

You're testing with the pretrained model, use the trained model (in BaiDuYunPan) instead.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants