-
Notifications
You must be signed in to change notification settings - Fork 8
/
test_cpu.py
186 lines (145 loc) · 6.36 KB
/
test_cpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from __future__ import print_function
import argparse
import os
import time
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
from wresnet_models import *
from h5_dataloaders import *
import pandas as pd
parser = argparse.ArgumentParser(description='SETI Classifier - Test Model')
parser.add_argument('arch', metavar='PATH',
help='architecture to use')
parser.add_argument('checkpoint', metavar='PATH',
help='path to model checkpoint')
parser.add_argument('h5data', metavar='PATH',
help='path to hdf5 file with test data')
parser.add_argument('h5normalizedata', metavar='PATH',
help='path to hdf5 file with mean and std-dev tensors')
parser.add_argument('-j', '--workers', default=1, type=int, metavar='N',
help='number of data loading workers (default: 1)')
parser.add_argument('-b', '--batch-size', default=16, type=int,
metavar='N', help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
# Available models
# model_archs = ['resnet18', 'resnet34', 'resnet50', 'resnet86', 'resnet101', 'resnet131', 'resnet203', 'resnet152',
# 'resrnn2x2', 'resrnn2x3', 'resrnn3x2', 'resrnn3x3', 'resrnn3x10', 'wresnet28x10', 'wresnet16x8',
# 'wresnet34x2', 'wresnet40x10', 'wresnet28x20', 'densenet161', 'densenet201', 'dpn92', 'dpn98',
# 'dpn131']
model_archs = ['wresnet34x2']
def main():
"""
Load model's graph, loss function, optimizer, dataloaders.
Perform testing.
"""
global args
args = parser.parse_args()
print("\n\nChosen args:")
print(args)
assert args.arch in model_archs
model = eval(args.arch + '()').cpu()
if os.path.isfile(args.checkpoint):
print("=> Loading checkpoint '{}'".format(args.checkpoint))
checkpoint = torch.load(args.checkpoint, map_location=lambda storage, loc: storage)
args.start_epoch = checkpoint['epoch']
best_acc = checkpoint['best_acc']
print("This model had an accuracy of %.2f on the validation set." % (best_acc,))
keys = checkpoint['state_dict'].keys()
for old_key in keys:
new_key = old_key.replace('module.', '')
checkpoint['state_dict'][new_key] = checkpoint['state_dict'].pop(old_key)
model.load_state_dict(checkpoint['state_dict'])
print("=> Loaded checkpoint '{}' (epoch {})"
.format(args.checkpoint, checkpoint['epoch']))
else:
print("=> No checkpoint found at '{}'".format(args.checkpoint))
cudnn.benchmark = False
# Store {index->UUID} mapping in the order in the test set, to keep track of the UUIDs of the data in the DataLoader
# This isn't really required since the DataLoader returns in the original order with shuffle=False, but hey...
print('UUID mapping... ')
h = h5py.File(args.h5data, 'r')
global uuid_index_mapping
uuid_index_mapping = {}
for i in range(h['uuids'][:].shape[0]):
uuid_index_mapping[i] = h['uuids'][:][i][0]
h.close()
# Normalizer
print('Normalizing signals...')
h = h5py.File(args.h5normalizedata, 'r')
mean = torch.FloatTensor(h['mean'][:])
mean = mean.permute(2, 0, 1)
std_dev = torch.FloatTensor(h['std_dev'][:])
std_dev = std_dev.permute(2, 0, 1)
h.close()
normalize = transforms.Normalize(mean=mean,
std=std_dev)
# Custom dataloader
print('Instantiating test loader')
test_loader = torch.utils.data.DataLoader(
h5TestDataset(args.h5data, transforms.Compose([normalize])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=False)
test(test_loader, model)
def test(test_loader, model):
"""
Perform testing.
"""
print('Perform testing')
model.eval() # eval mode
all_probs = []
all_uuids = []
batch_time = AverageMeter() # forward prop. time this batch
start = time.time()
softmax = torch.nn.Softmax() # need this, since there is no longer a loss layer
for i, (input, uuids) in enumerate(test_loader):
softmax.zero_grad()
# Store UUIDs associated with this batch, in the right order
uuids = list(uuids.numpy().ravel())
all_uuids.extend(uuids)
input_var = torch.autograd.Variable(input, volatile=True).cpu()
output = model(input_var)
probs = softmax(output)
all_probs.append(probs.data)
batch_time.update(time.time() - start)
start = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Batch Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'.format(i, len(test_loader),
batch_time=batch_time))
all_probs = torch.cat(all_probs).cpu() # concatenate probs from all batches, move to CPU
all_uuids = [uuid_index_mapping[i] for i in all_uuids] # convert UUID indices to UUIDs
# Create dataframe and store as CSV
df1 = pd.DataFrame({'UUIDs': pd.Series(all_uuids)})
df2 = pd.DataFrame(all_probs.numpy())
df = pd.concat([df1, df2], axis=1)
csv_path = './TESTRESULTS__' + args.checkpoint.split('/')[-1] + '__' + args.h5data.split('/')[-1] + '.csv'
df.to_csv(csv_path, header=False, index=False)
print("\nSaved results to {0}\n".format(csv_path))
class AverageMeter(object):
"""
Keeps track of most recent, average, sum, and count of a metric.
"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
if __name__ == '__main__':
main()