From 14886640c58a742d23d9b0f4b1bf0db5f89b55f5 Mon Sep 17 00:00:00 2001 From: Stephan Finkensieper Date: Fri, 18 Oct 2024 16:14:46 +0000 Subject: [PATCH] Simplify test --- .../reader_tests/test_mviri_l1b_fiduceo_nc.py | 83 +++++++------------ 1 file changed, 30 insertions(+), 53 deletions(-) diff --git a/satpy/tests/reader_tests/test_mviri_l1b_fiduceo_nc.py b/satpy/tests/reader_tests/test_mviri_l1b_fiduceo_nc.py index 4c4714f2f4..a83c88252e 100644 --- a/satpy/tests/reader_tests/test_mviri_l1b_fiduceo_nc.py +++ b/satpy/tests/reader_tests/test_mviri_l1b_fiduceo_nc.py @@ -584,77 +584,54 @@ def test_file_pattern(self, reader): assert len(files) == 6 -class DatasetWithCorruptCoordinates: - """Replicate a dataset with corrupt coordinates.""" - - def __init__(self, ds): - """Initialize the dataset.""" - self.dims = ds.dims - self.coords = ds.coords - # Now ds["myvar"] doesn't have coords, but they're still in ds.coords - self.ds = ds.drop_vars(["y", "x"]) - self.data_vars = self.ds.data_vars - - def __getitem__(self, item): - """Get variable from the dataset.""" - return self.ds[item] - - def __setitem__(self, key, value): - """Set dataset variable.""" - self.ds[key] = value - - class TestDatasetPreprocessor: """Test dataset preprocessing.""" - def test_fix_duplicate_dimensions(self): - """Test the renaming of duplicate dimensions. + @pytest.fixture(name="dataset") + def fixture_dataset(self): + """Get dataset before preprocessing. - If duplicate dimensions are within the Dataset, opening the datasets with chunks throws a warning. - The dimensions need to be renamed. + - Encoded timestamps including fill values + - Duplicate dimension names + - x/y coordinates not assigned """ time = 60*60 - time_exp = np.datetime64("1970-01-01 01:00").astype("datetime64[ns]") - ds = xr.Dataset( + return xr.Dataset( data_vars={ "covariance_spectral_response_function_vis": (("srf_size", "srf_size"), [[1, 2], [3, 4]]), "channel_correlation_matrix_independent": (("channel", "channel"), [[1, 2], [3, 4]]), "channel_correlation_matrix_structured": (("channel", "channel"), [[1, 2], [3, 4]]), - "time_ir_wv": (("y_ir_wv", "x_ir_wv"), [[time, time], [time, time]], - {"_FillValue": fill_val, "add_offset": 0}) - } + "time": (("y", "x"), [[time, fill_val], [time, time]], + {"_FillValue": fill_val, "add_offset": 0}) + } ) - ds_preproc = DatasetPreprocessor().preprocess(ds) - ds_exp = xr.Dataset( + + @pytest.fixture(name="dataset_exp") + def fixture_dataset_exp(self): + """Get expected dataset after preprocessing. + + - Time should have been converted to datetime64 + - Duplicate dimensions should have been removed + - x/y coordinates should have been assigned + """ + time_exp = np.datetime64("1970-01-01 01:00").astype("datetime64[ns]") + return xr.Dataset( data_vars={ "covariance_spectral_response_function_vis": (("srf_size_1", "srf_size_2"), [[1, 2], [3, 4]]), "channel_correlation_matrix_independent": (("channel_1", "channel_2"), [[1, 2], [3, 4]]), "channel_correlation_matrix_structured": (("channel_1", "channel_2"), [[1, 2], [3, 4]]), - "time": (("y_ir_wv", "x_ir_wv"), [[time_exp, time_exp], [time_exp, time_exp]]) + "time": (("y", "x"), [[time_exp, np.datetime64("NaT")], [time_exp, time_exp]]) + }, + coords={ + "y": [0, 1], + "x": [0, 1] } ) - xr.testing.assert_allclose(ds_preproc, ds_exp) - - def test_reassign_coords(self): - """Test reassigning of coordinates. - For some reason xarray does not always assign (y, x) coordinates to - the high resolution datasets, although they have dimensions (y, x) and - coordinates y and x exist. A dataset with these properties seems - impossible to create (neither dropping, resetting or deleting - coordinates seems to work). Instead use mock as a workaround. - """ - myvar = xr.DataArray( - [[1, 2], [3, 4]], - coords={ - "y": [.1, .2], - "x": [.3, .4] - }, - dims=("y", "x") - ) - ds = DatasetWithCorruptCoordinates(xr.Dataset({"myvar": myvar})) - DatasetPreprocessor()._reassign_coords(ds) - xr.testing.assert_equal(ds["myvar"], myvar) + def test_preprocess(self, dataset, dataset_exp): + """Test dataset preprocessing.""" + preprocessed = DatasetPreprocessor().preprocess(dataset) + xr.testing.assert_allclose(preprocessed, dataset_exp) class TestInterpolator: