-
Notifications
You must be signed in to change notification settings - Fork 50
/
Copy pathcross_entropy_test.py
35 lines (26 loc) · 1.16 KB
/
cross_entropy_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
def test_cross_entropy():
x_data = np.linspace(0, 0.5, 200)[:, None]
noise_data = np.random.uniform(-0.02, 0.02, x_data.shape)
y_data = np.square(x_data) + noise_data
x = tf.placeholder(tf.float32, [None, 1])
y = tf.placeholder(tf.float32, [None, 1])
weight_layer1 = tf.Variable(tf.random_normal([1, 100]))
output_layer1 = tf.nn.sigmoid(tf.matmul(x, weight_layer1))
weight_layer2 = tf.Variable(tf.random_normal([100, 1]))
logits = tf.matmul(output_layer1, weight_layer2)
predicts = tf.nn.sigmoid(logits)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y, logits=logits))
train = tf.train.AdamOptimizer(0.01).minimize(loss)
with tf.Session() as session:
session.run(tf.global_variables_initializer())
for _ in range(1, 10000):
session.run(train, feed_dict={x: x_data, y: y_data})
plt.figure()
plt.scatter(x_data, y_data)
plt.scatter(x_data, session.run(predicts, feed_dict={x: x_data, y: y_data}), c="r")
plt.show()
if __name__ == "__main__":
test_cross_entropy()